Curriculum of Diploma Programme

in

Mechanical Engineering

Department of Science, Technology and Technical Education (DSTTE), Govt. of Bihar

State Board of Technical Education (SBTE), Bihar

Course	Category	Course Titles	Teaching & Learning Scheme (Hours/Week)						
Codes	of course		Classroom Instruction(CI)		Lab Instruction	Notional Hours	Total Hours	Total Credits	
			L	Т	(LI)	(TW+SL)	(CI+LI+TW+SL)	(C)	
2425601	PCC	Design of Machine Elements	02	01	-	02	05	04	
2425602	PCC	Maintenance & Safety of Mechanical & Solar Appliances	03	-	04	02	09	06	
2425603	PEC	Programme Electives* (Any One)	03	-	04	02	09	06	
2400604	OEC	Open Electives**/ COE (Advanced -Any One)	03	-	04	02	09	06	
2425606	PSI	Major Project (Common for all programmes)	-	-	08	04	12	06	
2400107	NRC	Professional Ethics (CE, CSE, ELX, ELX (R), FTS, ME, AIML, MIE, CHE, CRE, FPP, GT, EE, AE, CACDDM)	01	-	-	-	01	01	
2400408	NRC	Employability Skills Development (Common for All Programmes)	01	-	-	-	01	01	
		Total	13	1	20	12	46	30	

Semester – VI Teaching & Learning Scheme

Note: Prefix will be added to course code if applicable (T for Theory Paper, P for Practical Paper and S for Term Work)

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies) Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

- TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)
- SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.
- C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)
- *: Heat and Mass Transfer/ Power Plant Engineering/ Press Tool, Jigs and Fixture/ Hydraulic and Pneumatic Controls/Renewable and Alternate Energy Sources
- **: Artificial Intelligence (AI)/ IOT/ Drone Technology/ 3D Printing & Design/ Industrial Automation & Control/ Electric Vehicle/ Robotics

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

Semester - VI Assessment Scheme

				Assessment	Scheme (Marks)				٦
			Theory Assessment(TA)		Term work &Self-Learning Assessment (TWA)		Lab Assessment (LA)		TWA+L
Course Codes	Category of course	Course Titles	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2425601	PCC	Design of Machine Elements	30	70	20	30	-	-	150
2425602	PCC	Maintenance & Safety of Mechanical & Solar Appliances	30	70	20	30	20	30	200
2425603	PEC	Programme Electives* (Any One)	30	70	20	30	20	30	200
2400604	OEC	Open Electives**/COE (Advanced -Any One)	30	70	20	30	20	30	200
2425606	PSI	Major Project (Common for all programmes)	-	-	20	30	50	100	200
2400107	NRC	Professional Ethics	25	-	-	-	-	-	25
2400408	NRC	Employability Skills Development (Common for All Programmes)	25	-		-	-	-	25
		Total	170	280	100	150	110	190	1000

Note: Prefix will be added to course code if applicable (T for Theory Paper, P for Practical Paper and S for Term Work)

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

*: Heat and Mass Transfer/ Power Plant Engineering/ Press Tool, Jigs and Fixture/ Hydraulic and Pneumatic Controls/Renewable and Alternate Energy Sources

**: Artificial Intelligence (AI)/ IOT/ Drone Technology/ 3D Printing & Design/ Industrial Automation & Control/ Electric Vehicle/ Robotics

Note: ETA & ELA are to be carried out at the end of the term/ semester.

• Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

Diplo	ma in Mechanical Engineering	Semester -VI	SBTE, Bihar
A)	Course Code	: 2425601(T2425601/ S2425601)	
B)	Course Title	: Design of Machine Elements	
C)	Pre- requisite Course(s)	: Material properties, Strength of Materials	

•

D) Rationale

Design department of industry is one of the major job areas for Diploma Technicians. It is expected from a diploma student to have fundamental knowledge of Applied Mechanics, Strength of Materials, Engineering Materials, Theory of Machines, thermodynamics, fluid mechanics and Computer Aided Design and Drafting to undertake simple design assignments. To enable a student to work in design team, he should know how to design simple machine elements and selection procedure of simple machine components which are frequently required in industries. He should also be aware of usual design procedures, codes, norms, standards and guidelines for selection of appropriate material and standard components. This subject aims at developing analytical and selection abilities in the student to give solutions to simple engineering design problems using standard procedures.

E) Course Outcomes (COs): The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry-oriented COs associated with the above-mentioned competency:

After completion of the course, the students will be able to-

- **CO-1** Explain basic concepts used in design of mechanical components.
- **CO-2** Identify suitable materials for designing machine elements.
- **CO-3** Design joints and levers for various applications.
- **CO-4** Design simple machine part and power transmission elements like shafts, keys and couplings.
- **CO-5** Select standard components like bearings, gears, power screws, springs and suitable fasteners for different applications from Manufacturer's catalogue/Design data book.
- **CO-6** Apply ergonomics & aesthetic considerations in design of simple machine elements.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Outcomes (POs)								
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life long Learning		PSO-2	
CO-1	3	1	3	-	-	-	-			
CO-2	3	2	2	-	-	-	-			
CO-3	3	-	3	-	-	1	2			
CO-4	3	-	3	-	-	1	2			
CO-5	3	2	1	-	-	1	2			
CO-6	3	-	1	-	2	1	1			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

				Scheme of Study (Hours/Week)				
Course Code	CourseTitle		room Iction CI)	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (Cl+Ll+TW+SL)	Total Credits (C)	
		L	Т					
	Design of							
2425601	Machine	02	01	-	02	05	04	
	Elements							

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			А	ssessment S	cheme (Mar	ks)		
		Theory As: (TA			ork & Self sssessment /A)	Lab Asse (L/		(A+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2425601	Design of Machine Elements	30	70	20	30	-	-	150

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2425601

Maj	jor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1b. TSO 1c. TSO 1d. TSO 1e.	Identify the different types of loads and their effect. Calculate the induced stresses in the given machine elements for the given load condition. Determine dimensions of the component under given conditions considering factor of safety. Use theories of failure in designing in the given simple machine component.	 Unit-1.0 Fundamentals of Machine Design 1.1 Introduction to design, Machine Design philosophy and steps. 1.2 Types of loads, concepts of Strength, Stress and Strain; Stress – Strain Diagram for Ductile and Brittle Materials. 1.3 Recall of direct and principal stresses and strains. (Simple numerical) 1.4 Creep, Creep strain and Creep Curve; (Introduction only) 1.5 Cyclic loading, Fatigue; S-N curve; Endurance Limit; (Introduction only) 1.6 Factor of Safety and factors governing selection of Factor of Safety; 1.7 Stress Concentration: Causes & Remedies; Converting actual load or torque into design load or torque using design factors Like velocity factor, factor of safety & service factor 1.8 Introduction to International standards; Advantages of standardization; Use of design data book; Use of standards in design and preferred numbers series 1.9 Theories of Elastic Failures; Principal normal stress theory; Maximum shear stress theory & Maximum distortion energy theory. 	CO1
	Identify the different properties of engineering materials required for the given machine component and loading.	Unit-2.0 Design of Simple Machine Part & Antifriction Bearing 2.1 Properties of Engineering materials;	CO2, CO3 CO4, CO5
TSO 2b.	Describe procedures for designing simple given machine parts such as C-Clamp, Hand/Foot Lever etc	Designation of materials as per IS; Important mechanical properties of materials: Elasticity,	
TSO 2c.	Classify Anti friction bearing.	Plasticity, Hardness, Ductility, Malleability,	
	Calculate main design parameters for Ball and Roller contact bearing Select the relevant Ball and Roller bearing for the given load condition.	Brittleness, Resilience, Toughness, 2.2 Design of simple machine parts: Cotter Joint; Knuckle Joint; Turnbuckle; Design of Levers: Hand/Foot Lever & Bell Crank Lever; Design of C- Clamp; Off-set links; Overhang Crank; Arm of	
		 Pulley. 2.3 Antifriction Bearings: Classification of Bearings; Sliding contact & Rolling contact; Terminology of Ball bearings: Life Load relationship, Basic static load rating and Basic dynamic load rating, limiting speed; Selection of ball bearings using manufacturer's catalogue. 	
TSO 3a.	Describe design procedure for shafts and keys for given loading conditions.	Unit-3.0 Design of Shaft, Key, Coupling & Spur Gear	CO2, CO4, CO5
TSO 3b.		3.1 Design of Shafts: Types of Shafts; Shaft materials; Standard Sizes; Design of Shafts (Hollow and Solid) using strength and rigidity criteria; ASME code of	
	Describe design of different types of		

na in Mechanical Engineering Semes	ter -vi S	BIE, Binar
Major Theory Session Outcomes (TSOs)	Units	Relevan COs Number(s
TSO 4a. Identify screw threads of a given power screw. TSO 4b. Describe design of spring and its properties. TSO 4c. Describe construction and application of leaf spring.	 3.2 Design of Sunk Keys; Effect of Keyways on strength of shaft; 3.3 Design of Couplings – Muff Coupling, Protected type Flange Coupling, Bush-pin type flexible coupling 3.4 Spur gear design considerations; Lewis equation for static beam strength of spur gear teeth; Power transmission capacity of spur gears in bending. Unit-4.0 Design of Power Screw, Spring & Leaf Spring 4.1 Design of Power Screws: Thread Profiles used for power Screws -Relative merits and de- merits of each; Torque required to overcome thread friction; Self- Locking and overhauling property; Efficiency of power screws; Types of stresses induced; Design of Screw Jack; Toggle Jack. 4.2 Design of springs: Classification and Applications of Springs; Spring terminology; Materials and Specifications; Stresses in springs; Wahl's correction factor; Deflection of springs; Energy stored in springs; Design of Helical, Tension and Compression springs subjected to uniform applied loads like I.C. engine valves, Weighing balance, Railway buffers and Governor Springs 	CO2, CO5
TSO 5a. Describe design of fasteners,	4.3 Leaf springs: Construction and Application. Unit-5.0 Design of Fasteners & Ergonomics	CO5, CO6
 TSO 5b. Describe design of bolts subjected to eccentric loading. TSO 5c. Describe design of different types of welded joints. TSO 5d. Describe merits and demerits of screwed and welded joints. TSO 5e. Describe ergonomics & aesthetic considerations in design of simple machine elements. TSO 5f. Describe aesthetic considerations in design of different machine elements. 	 5.1 Design of Fasteners: Stresses in Screwed fasteners; Bolts of Uniform Strength; Design of Bolted Joints subjected to eccentric loading; Design of Parallel and Transverse fillet welds; Axially loaded symmetrical section; Merits and demerits of screwed and welded joints. 5.2 Ergonomics & Aesthetic consideration in design: Ergonomics of Design: Man– Machine relationship; Design of Equipment for control, environment & safety; Aesthetic considerations regarding shape, size, color & surface finish. 	

Note: One major TSO may require more than one theory session/period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: (Not Applicable)

- L) Suggested Term Work and Self Learning: S2425601 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - a. Assignments:
 - 1. Perform designing of simple components under static single load situation through at least 5 numerical problems
 - 2. Perform designing of simple components under simple static multi-load situation through at least 2 numerical problems
 - 3. Prepare a list of tests and map them with corresponding mechanical properties.
 - 4. Discuss the selection of materials for machine elements, taking into account properties like strength, stiffness, and wear resistance.
 - 5. Perform designing of simple machine components like Cotter Joint; Knuckle Joint; Turnbuckle; Hand/Foot Lever & Bell Crank Lever; C- Clamp; Off-set links; Overhang Crank; Arm of Pulley.

- 6. Prepare drawings of various shaft and key geometries and corresponding loading diagram.
- 7. Use mathematical calculations to determine the stresses induced in the shaft and coupling due to torsion, shear, and bending moments.
- 8. Solve simple design problems of shaft, axle, keys and couplings.
- 9. Determine the dimensions of the coupling, including key size, keyway dimensions, and hub details with safety factor.
- 10.Solve numerical problems related to calculation of Bearing life and dynamic Load carrying capacity of a bearing.
- 11.Write complete procedure of selection of any one type of Antifriction bearing from Manufacturer's catalogue.
- 12. Solve numerical problems related to Spur gears, Power Screws, Joints and Springs (5 on each).
- 13. Examine how to optimize machine element design for ease of manufacturing and assembly.
- 14.Explore how machine element design can be environmentally friendly, including material recycling and energy efficiency.

b. Micro Projects:

- 1. Prepare a list of companies where machine components are designed and produced.
- 2. Prepare a list of materials along with their properties and designated codes used in manufacturing of common mechanical components.
- 3. Find Indian Standard and ASME Codes for Design for various machine elements.
- 4. Identify machine/equipment components under static single and multi-load situations and prepare a list of the same. (Group work).
- 5. Collect information from www related to factor of safety values used in designing of various domestic and industrial components.
- 6. Collect samples of welding, riveted and threaded joints from scrap and make demonstrative models. (Group work)
- 7. Prepare CAD model of Deep Groove Ball bearing and Taper Roller Bearing using any CAD software.
- 8. Collect/download at least four different Bearing manufacturer's catalogues.
- 9. Collect three types of Scrap/used antifriction bearing and fix them on a board with labels. (Group work)

C. Other Activities:

- 1. Seminar Topics:
 - Selection of appropriate materials based on factors like strength, stiffness, corrosion resistance, and cost.
 - Bearing Specifications and meaning
 - Design for strength and design for stiffness
 - Meaning of static Single load and static Multi load situations
 - Theories of failure
 - Lewis Gear design approach
- 2. Visits:
 - Visit a nearby industry to identify the various types of machine design methods they are using.
 - Visit a nearby industry and collect drawings of various components. Try to interpret them.
 - Visit a nearby industry to identify the type of CAD software they are using.
 - Visit a nearby industry to identify shaft, axle, keys and couplings fitted in a machine/automobile and measure dimensions.

- 3. Self-Learning Topics:
 - Material properties (Mechanical)
 - Stress Strain Curve.
 - Factor of safety.
 - Types of Keys
 - Different elements of a Spur gears and Rolling contact bearing.
 - Parts of a leaf spring
- M) Suggested Course Evaluation Matrix: The course teacher must decide and use appropriate assessment strategy and its weightage in theory, laboratory, and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	ourse Evalu	ation Matrix			
	Theory Assessment (TA)** Term Work Assessment (TWA)				ent (TWA)	Lab Assessment (LA) [#]		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Work & Self-Learning Assessment			Progressive Lab Assessment	End Laboratory Assessment	
	Class/Mid Sem Test		Assignments	Micro Projects	Other Activities*	(PLA)	(ELA)	
CO-1	15%	15%	15%	-	-	-	-	
CO-2	10%	10%	10%	20%	20%	-	-	
CO-3	15%	15%	15%	20%	20%	-	-	
CO-4	20%	20%	20%	20%	20%	-	-	
CO-5	30%	30%	30%	20%	20%	-	-	
CO-6	10%	10%	10%	20%	20%			
Total	30	70	20 20 10			-	-	
Marks				50				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	classroom instruction (CI) HOURS	Cos Number (s)	Marks	Remember (R)	Understanding (U)	Application& above (A)
Unit-1.0 Fundamentals of Machine design	10	C01	12	3	3	6
Unit-2.0 Design of simple machine part & antifriction bearing	8	CO2, CO3, CO4, CO5	10	3	3	4
Unit-3.0 Design of Shaft, Key, Coupling & Spur Gear	10	CO2, CO4, CO5	18	5	5	8
Unit-4.0 Design of Power Screw, Spring & Leaf Spring	10	CO2, CO5	12	4	4	5
Unit-5.0 Design of Fasteners & Ergonomics	10	CO5, CO6	18	5	6	7
Total	48		70	20	21	30

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical): (Not Applicable)

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software: (Not Applicable)

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Machine Design	Sadhu Singh	Khanna Book Publishing Co., Delhi (ISBN:978-9382609-575)
2.	Introduction to Machine Design	V.B.Bhandari	Tata Mc- Graw Hill, NewDelhi. (ISBN-13:978-9390177479)
3.	Mechanical Engineering Design	Joseph Edward Shigley	Tata Mc- Graw Hill, NewDelhi. (ISBN-13:978-9355322258)
4.	Hand Book of Properties of Engineering Materials & Design Data for Machine Elements	Abdulla Shariff	Dhanpat Rai & Sons, New Delhi. (ISBN:97881927355890)
5.	Design Data Book	PSG Coimbtore	Kalakathir Achchagam (ISBN-13:9788192735504)

(b) Online Educational Resources:

- 1) https://archive.nptel.ac.in/courses/113/102/113102080/
- 2) http://www.issp.ac.ru/ebooks/books/open/Materials_Science_and_Technology.pdf
- 3) https://anupturnedworld.files.wordpress.com/2016/06/callister-materials-scienceand-engineering.pdf
- 4) https://www.pdhonline.com/courses/m236/m236.htm
- 5) https://www.mcmaster.com/
- 6) http://nptel.ac.in/downloads/112105125/
- 7) https://en.wikipedia.org/wiki/Fastener
- 8) http://nptel.ac.in/courses/112105124/
- 9) https://www.youtube.com/watch?v=CLeLFUrvO2g
- 10) www.machinedesignonline.com
- 11) www.engineeringtoolbox.com
- 12) https://www.youtube.com/watch?v=N5SckoiTDxA
- 13) https://www.youtube.com/watch?v=GfbcxJmjn9s
- 14) http://www.ignou.ac.in/upload/Unit-5-60
- 15) https://sizes.com/numbers/preferred_numbers.htm
- 16) www.robot-and-machines-design.com/en/articles/mech
- 17) http://www.youtube.com/flangedcoupling

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

Diploma in Mechanical Engineering	Semester -VI SBTE, Bihar
A) Course Code	: 2425602(T2425602/P2425602/S2425602)
B) Course Title	: Maintenance & Safety of Mechanical & Solar Appliances

:

C) Pre- requisite Course(s)

D) Rationale

In day-to-day working we come across different types of Equipment for different purposes and functions. This section covers the different safety aspects of using machinery and maintaining plant and equipment in the workplace. Student should able to know how their worker use machinery and have adequate maintenance arrangements in place to ensure it remains safe to use.

The aim of this course is to dedicated for transforming the students into highly competent Mechanical engineers to meet the needs of the industry, in a changing and challenging technical environment, by strongly focusing in the fundamentals of engineering sciences for achieving excellent results in their professional pursuits.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ workshop/ field/ industry.

After completion of the course, the students will be able to -

- **CO-1** Apply various tools and preventive actions for safety.
- **CO-2** Apply various safety acts and ergonomics in industry.
- **CO-3** Use relevant maintenance practices for the given situation.
- **CO-4** Develop maintenance plans & charts to maintain the equipment's and machines
- **CO-5** Perform various maintenance related to various Mechanical equipment's & Solar Appliance.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	3	3	2	2	1	3	3		
CO-2	2	3	2	1	-	2	2		
CO-3	2	3	2	1	2	2	3		
CO-4	3	2	3	1	2	2	2		
CO-5	2	3	-	1	2	2	3		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course				heme of Stud Hours/Week	-		
Code	Title	Classroom Instruction (CI)		Lab Instruction	Notional Hours	Total Hours	Total Credits (C)	
		L	т	(LI)	(TW+ SL)	(CI+LI+TW+SL)		
2425602	Maintenance & Safety of Mechanical & Solar Applieances	03	-	04	02	09	06	

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Α	ssessment S	cheme (Mai	·ks)		
		Theory Assessment (TA)		A) Self-Learning Assessment (TWA) (LA) Brogressive Lab Internal Internal Assessment External Internal (PLA) Progressive Lab Assessment (PLA) (PLA) (PLA) (ELA) (PLA) (PLA)	(TA+TWA+LA)			
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External			Total Marks (TA
2425602	Maintenance & Safety of Mechanical & Solar appliance	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)
 PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)
 TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self-Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2425602

Major	Theory Session Outcomes (TSOs)	Units	Relevant
			COs Number(s)
TSO 1b. TSO 1c. TSO 1d. TSO 1e. TSO 1f.	Describe the role of government in industrial safety. Explain educational training in safety Use of various safety equipment's by workers in different industry. Application of different Firefighting equipment for given industry. Explain Industrial psychology in accident prevention and Safety trial. Use of various PPE for given solar appliances in Solar industry. Explain various solar appliances & its construction, working and function	 Unit-1.0 Industrial Safety Equipment's 1.1 Introduction to Industrial Safety and Management, safety principal safe working condition and practices, Safety and productivity, 1.2 Role of management and role of Govt. in Industrial safety, motivation for safety. 1.3 Education and training in safety, Survey the plant for locations, Part of body to be protected, cause of accident& prevention, Housekeeping, Accident Preventions, Protective Equipment's and the Acts 1.4 Personal protective equipment (PPE), PPE for solar industry-hard hats, safety glasses, respiration ,gloves , fall protection equipment , hearing protection 1.5 Medical emergency, introduction to first aid, first aid box, incident management, CPR, bleeding, shock, burns & Scaldes 1.6 Fire, classification of fire, Firefighting equipment-Fire Extinguishers, types of fire extinguishers-Powder foam, CO2, wet chemical, water, uses of different types of fire extinguishers, symbols of fire extinguisher, fire safety sign, fire triangle and tetrahedral, Smoke detectors, Fire Alarm system. 1.7 Accident, Measures in industry, Accident reporting, Investigations, Industrial psychology in accident prevention, accident record keeping. Occupational safety and health assessment (OSHA) 1.8 Introduction to solar appliances, construction, working & function- Solar Water Heater, Photovoltaic Cell, Solar Distillation, solar drying, solar cooker, solar lighting 	CO1
TSO 2a.	Explain the features of factory Act (Explosive Boiler Act, ESI Act Workman's	Unit-2.0 Industrial Safety Acts	CO2
TSO 2c.	compensation Act etc). Explain Ergonomics. <i>Describe the</i> methods of controlling chemical hazards for a give situation. Explain Code and regulations for worker safety for solar penal.	 2.1 Features of Factory Act (1948), implementation of factory act(1948), Introduction of Explosive Act, Boiler Act(1923), Employee's state insurance Act(1948), Workman's compensation Act(1923), 	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
installation of solar Penal.	 2.2 Industrial hygiene, Diseases prevention, Ergonomics& health, Occupational diseases, stress, fatigue, health, safety and the physical environment, 2.3 Methods of controlling chemical hazards, safety and the physical environment, Control of industrial noise and protection against it 2.4 Code and regulation for solar panel installation-Building codes, fire codes and Electrical Codes, Code and regulations for worker safety. 2.5 Major solar policies in India. 	
TSO 3a. Explain principle and merits of	Unit-3.0 Principles and Practices of Maintenance	CO3
 maintenance. TSO 3b. Define reliability& equipment life cycle. TSO 3c. Explain the need of maintenance TSO 3d. Classified different types of maintenance used in industries TSO 3e. Calculating the costs associated with given asset breakdowns and downtime. TSO 3f. Enlist preventive maintenance of components of given solar appliances TSO 3g. Prepare maintenance contracts for given equipment used in industry. 	 3.1 Basic Principles of maintenance – Objectives, Benefit of Maintenance systems – Reliability and machine availability, Equipment Life cycle 3.2 Need and type of Maintenance- Breakdown maintenance, Preventive Maintenance, Condition Based monitoring - on line -off line monitoring, visual, temperature, leakage & lubricant monitoring 3.3 Introduction of Condition based Maintenance (CBM), Benefits, Principle and its Application (Temperature Readings, Pressure States and Oil Viscosity). 3.4 Maintenance budget and its components 3.5 Solar panel Maintenance- Preventive maintenance on major components of a solar system (Battery, Solar Panels, Charge Controller, Inverter and Wiring and connections) 3.6 Maintenance contracts and agreements. 	
TSO 4a. Evaluate role of maintenance planning for a given optimizing operations.	Unit-4.0 Maintenance Planning and Management	CO4
 TSO 4b. Prepare a maintenance work order for a given equipment. TSO 4c. Prepare Scheduling and maintenance plan for given machine to minimize downtime. 	4.1 Role of maintenance planning and scheduling, planning and scheduling techniques, gantt chart and bar chart, types of maintenance strategies,	
 TSO 4d. Analyzed CMMS and its function. TSO 4e. Analyzed Implementation and utilization of CMMS for efficient maintenance management in industry TSO 4f. Describe solar system and solar panel TSO 4g. Define maintenance measures and its related terms. TSO 4h. Explain maintenance organization TSO 4i. Prepare the various types of maintenance charts use in industry. TSO 4j. Prepare fault tree analysis for given equipment failures. 	 4.2 Computerized maintenance Management Systems (CMMS)- Introduction to CMMS and its functions, Implementation and utilization of CMMS for efficient maintenance management, E-maintenance solution for industrial equipment, Introduction of Software maintenance (SM) (Software-Hippo CMMS, open MAINT), Need for SM, Type of SM, its Process& Advantages. 4.3 Measures for Maintenance Performance: Equipment's breakdowns, Mean Time Between Failures and Repair, Factors of availability, Maintenance organization, 4.4 Repair cycle, Principles and methods of lubrication, Fault Tree Analysis and trouble shooting 	

		1		
Major	Theory Session Outcomes (TSOs)		Units	Relevant
				COs
				Number(s)
		4.5	Solar System Maintenance schedule, Solar	
			Panel maintenance log sheet.	
TSO 5a.	Analyze various solar appliances and its	Unit	-5.0 Application of Maintenance of	CO5
	application		Mechanical Equipment's & Solar	
TSO 5b.	Explain Solar Panels		Appliances	
TSO 5c.	Explain preventive & predictive			
	maintenance of equipment Solar	5.1	Maintenance checklist of Photovoltaic Cell,	
	appliances		Solar Water Heater and Solar lighting.	
TSO 5d.	Prepare a preventive maintenance chart	5.2	Preventive maintenance chart of Lathe	
	for the given machine/ Engine.		machine, drill, refrigerator and four stroke IC	
TSO 5e.	Evaluating the effectiveness of the		Engine.	
	preventive and predictive maintenance	5.3	Managing equipment warranties, guarantees	
	chart for a given equipment.		and service agreements	
TSO 5f.	Prepare service agreements document	5.4	Policy and objective for maintenance,	
	for given equipment.		Decision levels for equipment maintenance.	
TSO 5g.	Explain warranties and service	5.5	Calibration, need for calibration, standards	
	agreement for given equipment's.		and requirements, standard operating	
TSO 5h.	Explain the decision levels for given		procedures for calibration.	
	equipment maintenance.	5.6		
TSO 5i.	Explain standards and requirements		advantages of record keeping, types of	
	applicable to the measuring equipment.		record keeping- manual, automatic &	
TSO 5j.	Explain the need for calibration of		computerized record keeping maintenance	
	measuring equipment.		record format.	
TSO 5k.	Prepare a maintenance record keeping			
	for a given equipment.			
TSO 5I.	Enlist type of maintenance record			
	keeping.			

Note: One major TSO may require more than one theory session/period

K) Suggested Laboratory (Practical)Session Outcomes (LSOs)and List of Practical: P2425602

Practio	cal/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
LSO 1.1.	Use of personal protective equipment.	1.	Identify given personal protective equipment	CO1
		2.	Select PPE for the given job.	CO1
LSO 1.2.	Use first aid for the given injuries	3.	Perform first aid process in bleeding, shock, burns & scalds	CO1
LSO 1.3.	Use different types of fire extinguishers	4.	Identify different types of fire Extinguishers.	CO1
		5.	Operate the given fire extinguishers	CO1
LSO 1.4.	Apply OSHA	6.	Apply OSHA for the given laboratory	CO1
LSO 1.5.	Use Smoke detectors and Fire Alarm Systems	7.	Operate Smoke detectors and Fire Alarm Systems.	CO1
		8.	Test smoke detector and fire alarm system for its performance	CO1
		9.	Inspect test solar panel system and components for its performance	CO1

Practical/Lab Session Outcomes (LSOs) S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
	10.	Identify the faults in the given solar panel	CO1
	11.	Test solar water heater	CO1
LSO 2.1. Identify hazards	12.	Identify potential hazards in the given laboratory and recommend control measures.	CO2
SO 2.2. Use sound level meter	13.	Measure noise levels using sound level meters	CO2
SO 2.3. Install solar systems	14.	Install solar system using codes and regulation	CO2
<i>SO 2.4.</i> Boiler Act (1923)	15.	Identify the symbols and safety measures given on the boiler	CO2
SO 3.1 Equipment life cycle	16.	Calculate life of the given equipment	CO3
SO 3.2 Calculate total breakdown cost.	17.	Calculate direct and indirect breakdown costs of the given equipment	CO3
SO 3.3 Use maintenance schedule	18.	Perform maintenance of the given solar appliance as per the preventive maintenance schedule.	CO3
LSO 4.1. Calculate MTBF and MTTR for give equipment's	en 19.	Calculate MTBF and MTTR using provided data sets for the given equipment's	CO4
LSO 4.2. Troubleshoot the given system	20.	Troubleshoot the given solar system	CO4
LSO 4.3. Use CMMS	21.	Apply CMMS for the given equipment	CO4
LSO 4.4. Perform Fault Tree Analysis	22.	Conduct a Fault Tree Analysis for a given maintenance equipment problem	CO4
LSO 4.5. Apply relevant lubrication techniques	23.	Lubricate the given equipment	CO4
LSO 4.6. Use Solar panel maintenance log sheet template	24.	Prepare solar panel maintenance log sheet	CO4
LSO 4.7. Use maintenance software (Software-Hippo CMMS, open- MAINT	25.	Update the laboratory process by adding laboratory equipment to the software system, including details such as maintenance history and specifications.	CO4
	26.	Create work orders, update asset information, and generate maintenance reports of the given equipment.	CO4
<i>SO 5.1.</i> Solar Panel Installation (mounting, wiring, and configuring the panels)	27.	Install solar panels on a mock roof or structure.	CO5
LSO 5.2.	28.	Inspect clean and repair solar water heaters, including checking pumps and controls.	CO5
LSO 5.3. Maintain solar lighting system	29.	Inspect a solar lighting system using preventive maintenance checklist including battery health, wiring, and light intensity.	CO5
LSO 5.4. Apply step-by-step calibration procedures for the given	30.	Identify tools and equipment required for calibration.	CO5
equipment's	31.	Calibrate the given micrometers and Vernier caliper	CO5
	32.	Calibrate the given pressure gauges	CO5

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
	33.	Calibrate the given screw driver and testers	CO5
	34.	Perform maintenance activities on the lath machine using preventive maintenance schedule	CO5

L) Suggested Term Work and Self Learning: S2425602 Some sample suggested assignments, micro project and other activities are mentioned here for reference.

a. Assignments:

- i. Prepare a detailed report on different types of solar appliances used for household with specification and prepare a maintenance plan.
- ii. Prepare a detailed report of various type of protective equipment used in industry to prevent the accident.
- iii. Compare at least 04 types of maintenance software used in industries based on the given criteria's and select one software which can be applicable in the laboratory with justification.
- iv. Explain different codes and regulations used in manufacturing industry for worker safety.
- v. Prepare various maintenance chart for given mechanical and solar appliance.
- vi. Prepare a detail charts on different types of acts applied in industries and laboratories.
- vii. Develop preventive maintenance checklist for major components of a solar system
- viii. Prepare maintenance schedule for Solar Water Heater
- ix. Develop a preventive Maintenance schedule for a lathe machine, including lubrication, calibration, and tool inspections

b. Micro Projects:

- i. Troubleshoot 02 given equipment's can perform the maintenance of the given equipment in industries.
- ii. Calculate the life of the given 05 equipment.
- iii. Visit the industry and prepare detailed report on maintenance methods and activities adopted to maintain the machines and equipment for 02 industries.
- iv. Visit the industry and prepare the report for provision made for safety of man & machine and implementation of OSHA in the industries.
- v. Prepare E-maintenance solution for industrial equipment

c. Other Activities:

- i. Use demonstration, video/animation films field/industry visit for explaining complex/abstract concepts of Maintenance & Safety of Mechanical &Solar
- ii. Students may be asked the method to solve the Problem before accident during lecture periods.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	urse Evalua	tion Matrix			
	Theory Asses	sment (TA)**	Term W	ork Assessm	nent (TWA)	Lab Assessment (LA) [#]		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Work & Self Learning Assessment		Progressive Lab Assessment	End Laboratory Assessment		
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)	
	Sem Test			Projects	Activities*			
CO-1	15%	10%	15%	-	-	20%	20 %	
CO-2	10%	20%	10%	25%	-	10%	20 %	
CO-3	15%	20%	15%	25%	33%	15%	20 %	
CO-4	30%	20%	30%	25%	33%	15%	20 %	
CO-5	30%	30%	30%	25%	34%	40%	20 %	
Total	30	70	20	20 20 10		20	30	
Marks				50		1		

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

The percentage given are approximate

 In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Industrial Safety Equipment's	08	CO1	12	3	4	5
Unit-2.0 Industrial Safety Acts	10	CO2	14	4	5	5
Unit-3.0 Principles and Practices of Maintenance	08	CO3	12	3	4	5
Unit-4.0 Maintenance Planning and Management	11	CO4	16	5	5	6
Unit-5.0 Application of Maintenance in mechanical equipment's & Solar Appliances	11	CO5	16	5	5	6
Total	48	-	70	20	23	27

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Balavant	F		
S.	Laboratory Practical Titles	Relevant COs	Perfor	mance	Viva-
No			PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
1.	Identify given personal protective equipment	C01	40	50	10
2.	Select PPE for the given job.	C01	40	50	10
3.	Perform first aid process in bleeding, shock, burns & scalds	C01	40	50	10
4.	Identify different types of fire Extinguishers.	CO1	40	50	10
5.	Operate the given fire extinguishers	C01	40	50	10
6.	Apply OSHA for the given laboratory	C01	40	50	10
7.	Operate Smoke detectors and Fire Alarm Systems.	C01	40	50	10
8.	Test smoke detector and fire alarm system for its performance	C01	40	50	10
9.	Inspect test solar panel system and components for its performance	C01	40	50	10
10.	Identify the faults in the given solar panel	CO1	40	50	10
11.	Test solar water heater	C01	40	50	10
12.	Identify potential hazards in the given laboratory and recommend control measures.	CO2	40	50	10
13.	Measure noise levels using sound level meters	CO2	40	50	10
14.	Install solar system using codes and regulation	CO2	40	50	10
15.	Identify the symbols and safety measures given on the boiler	CO2	40	50	10
16.	Calculate life of the given equipment	CO3	40	50	10
17.	Calculate direct and indirect breakdown costs of the given equipment	CO3	40	50	10
18.	Perform maintenance of the given solar appliance as per the preventive maintenance schedule.	CO3	40	50	10
19.	Calculate MTBF and MTTR using provided data sets for the given equipment's	CO4	40	50	10
20.	Troubleshoot the given solar system	CO4	40	50	10
21.	Apply CMMS for the given equipment	CO4	40	50	10
22.	Conduct a Fault Tree Analysis for a given maintenance equipment problem	CO4	40	50	10

			F	PLA/ELA	
S.		Relevant COs	Performance		Viva-
No	Laboratory Practical Titles	Number(s)	PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
23.	Lubricate the given equipment	CO4	40	50	10
24.	Prepare solar panel maintenance log sheet	CO4	40	50	10
25.	Update the laboratory process by adding laboratory equipment to the software system, including details such as maintenance history and specifications.	CO4	40	50	10
26.	Create work orders, update asset information, and generate maintenance reports of the given equipment.	CO4	40	50	10
27.	Install solar panels on a mock roof or structure.	CO5	40	50	10
28.	Inspect clean and repair solar water heaters, including checking pumps and controls.	CO5	40	50	10
29.	Inspect a solar lighting system using preventive maintenance checklist including battery health, wiring, and light intensity.	CO5	40	50	10
30.	Identify tools and equipment required for calibration.	CO5	40	50	10
31.	Calibrate the given micrometers and Vernier caliper	CO5	40	50	10
32.	Calibrate the given pressure gauges	CO5	40	50	10
33.	Calibrate the given screw driver and testers	CO5	40	50	10
34.	Perform maintenance activities on the lath machine using preventive maintenance schedule	CO5	40	50	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Personal protective equipment's	Different types of personal protective equipment's for workshop, chemical labs, Engg labs etc	1,2
2.	First aid box	First aid box containing all the essential equipment's and medicines	3
3.	Fire extinguishers	Different types of fire extinguishers	4,5
4.	Smoke detectors and fire alarm systems	Different types of Smoke detectors and fire alarm systems and its cut models	7,8

S.	Name of	Broad	Relevant
S. No.	Equipment, Tools	Specifications	Experiment/Practical
NO.	and Software	Specifications	Number
		Different trace of ealer wards. Caler wards. CO call. 72	
5.	Solar panel	Different types of solar panels, Solar panels- 60-cell, 72-	9,10, 24, 27
		cell, and 96-cell, Mechanical Characteristics-	
		Monocrystalline Silicon solar cells, Encapsulated: PC film	
		lamination	11.20
6.	Solar water heater	Different types of solar water heater	11, 28
		Solar Rating & Certification Corporation Standard 100	
		Minimum Standards for Solar Thermal Collectors	
		• Solar Rating & Certification Corporation Standard 300	
		Minimum Standards for Solar Water Heating Systems	
		Monitoring systems	42
7.	Sound level meter	Class -1 category, Dynamic Range- 100dB to 120dB.	13
		Microphone Types- Piezoelectric, Measurement-	
		Frequency Weightings Z type,	
		maximum data hold with built in calibration check	44.40.00
8.	Solar systems and	Different types of solar systems and appliances	14, 18, 20
	solar appliance		
9.	CMM software	Different CMM software's for maintenance and upkeep	25, 26
		of the lab	
10.	Solar lighting systems	Different types of solar light systems available in the	29
		market.	
		Solar Module 60-500 Wp, Batery (Lithium Ferro	
		Phosphate) 300 Wh (+20% permissible) to 3000Wh	
		(+20%), LED Luminaire 10 W (+20% permissible) to 24W	
		,4 Nos (+20%)	
11.	Micrometer	External micrometers and laser micro meters	31
12.	Vernier caliper	Digital Stainless-Steel caliper, approx. 150mm measuring	31
	•	range.	
		Precision reading, laser reticle.	
		Measuring Range: 0-150 millimeter or 0-6 inch.	
		Resolution: 0.01 millimeter or 0.0005 inch.	
		Repeatability: 0.01 millimeter or 0.0005 inch.	
		Maximum measurement speed: 1m/s.	
13.	Pressure gauges	H types, 1.6% ± EN 837 Class 1.6 (Class 2.5 for 0-600 & 0-	32
		1000 bar range, Vacuum: -1 - 0 bar Pressure: 0 - 1000 bar	
14.	Screw drivers and	-	33
	testers		

R) Suggested Learning Resources:

(a) Books:

S. No.	Title	Author(s)	Publisher and Edition with ISBN
1.	Occupational Health and Hygiene in Industry	SK. Haldar	CBS PUBLISHERS AND DISTIRIBUTORS PVT. LTD., 2022, ISBN-13 : 978-9354664922
2.	Safety In chemical plants /Industry & its Management	B.K.B.Rao R.K.Jain , Vinit Kumar	Khanna Publishers; 2010, ISBN-13 : 978-8174092984
3.	Principles of Fire Safety Engineering,	Das Akhil Kumar	PHI Learning Pvt Ltd; 2nd edition, 2020 ISBN-13 : 978-9389347234
4.	Industrial Safety, Health and Environment Management Systems	Sunil S.Rao R.K.Jain	Khanna Publishers; Latest edition, 2000 ISBN-13 : 978-8174092106
5.	A Textbook of Reliability and Maintenance Engineering	Alakesh Manna	Dreamtech Press, 2020 ISBN-13 : 978-9389698701
6.	Practical Root Cause Failure Analysis: Key Elements, Case Studies, and Common Equipment Failures (Reliability, Maintenance, and Safety Engineering)	Randy Riddell	Taylor & Francis Ltd; 1st edition, 2022 ISBN-13 : 978-1032164656
7.	Industrial Maintenance Management	Srivastava, S.K.	S. Chand and Co, 2002 ISBN: 978-8121916639
8.	Industrial Safety and Maintenance Management	M.P. Poonia, S.C. Sharma	Khanna publishing house, 2019 ISBN:9789386173188, 9386173182
9.	Installation, Servicing and Maintenance	Bhattacharya, S.N.	S. Chand and Co. 2013 ISBN: 9788121908313

(b) Online Educational Resources:

- 1) http://youtube.com/playlist?list=PLbRMhDVUMngdXebaRB59KdKwstzuAovua
- 2) https://www.youtube.com/watch?v=f58SW0Hwcf0
- 3) https://www.youtube.com/watch?v=0dmXvXYMiYU
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

Diploma in Mechanical Engineering		Semester -VI	SBTE, Bihar
A)	Course Code	: 2425603A(T2425603A/P2425603A/S2425603A)	
B)	Course Title	: Heat and Mass Transfer	
C)	Pre- requisite Course(s)	:	
ח)	Bationale		

Rationale D)

Heat and mass transfer as the name suggest is based on the findings the rate of heat transferred through the medium such as by conduction, convection and radiation, by virtue of the temperature difference between two mediums. Whenever a temperature difference exists within a system or when two system at different temperatures are brought into contact, energy is transferred. The aim of this course is to impart knowledge of different modes of heat transfer and their equipment

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Apply Fourier law of heat conduction to different materials.
- **CO-2** Select fins as per the given situation
- **CO-3** Apply the principles of forced and natural heat convection in various condition of heat transfer.
- **CO-4** Design different types of heat exchanger for the given problem.
- **CO-5** Calculate radiative heat fluxes between surfaces of simple geometries

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	3	1	1	2	1	-	2		
CO-2	2	1	2	2	1	-	2		
CO-3	2	2	3	2	2	1	2		
CO-4	2	2	3	2	1	1	2		
CO-5	2	2	2	3	1	1	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

		Course	Scheme of Study (Hours/Week)						
-	Course Code	Course Title	Classroom Instruction (Cl)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
			L	Т					
242	25603A	Heat and Mass	03	-	04	02	09	06	
	J	Transfer	00		04	52			

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			A	ssessment S	cheme (Mar	·ks)		
		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(ТА+ТWА+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T
2425603A	Heat and Mass Transfer	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2425603A

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1b. TSO 1c. TSO 1d.	Differentiate among different mode of heat transfer. Draw graph between temperature and thermal conductivity for different metals. Determine the thermal conductivity of given material. Draw graph of temperature distribution in different materials of given shape. Explain the use of critical radius in cylindrical pipes.	 Unit-1.0 Introduction to Heat Transfer 1.1 Modes of heat transfer: conduction, convection and radiation 1.2 Combined mode of heat transfer, Overall heat transfer coefficient, thermal conductivity of solid, liquid and gasses, effects of temperature on thermal conductivity of materials. 1.3 Fourier law of heat conduction, Differential equation of heat conduction 1.4 Steady state one dimensional Heat conduction – plane wall, sphere, cylinder, composite slab. 1.5 Thermal contact resistance, Thermal 	CO1
TSO 2b. TSO 2c. TSO 2d.	Explain the need of fins. Calculate the effectiveness of the given fins. Compare different shape of fins. Find the time constant of the given lumped body. Test the efficiency and effectiveness of different types of fins.	 diffusivity, critical radius of insulation. Unit-2.0 Fins 2.1 Types of fins, Heat flow through a rectangular fin, infinitely long fin, fin insulated at the tip and fin losing heat at tip. 2.2 Effectiveness and efficiency of fin. 2.3 Transient heat conduction, Lumped system analysis, Time constant, Unsteady state heat conduction in one dimension only, Biot number Heisler's chart 	CO2
TSO 3b. TSO 3c. TSO 3d. TSO 3e.	Draw the temperature profile and velocity profile of given type of convection. Determine convective heat transfer coefficient for a given convection process. Measure the fluid velocity and boundary layer for a given flow. Estimate the different dimensionless Number in given problem. Derive equation of flow	 Unit-3.0 Convection 3.1 Newton's law of cooling, Natural and forced convection 3.2 Continuity, momentum and energy equation, Thermal and hydrodynamic boundary layer 3.3 Free and Forced Convection during external flow over Plates and Cylinders and Internal flow through tubes. 3.4 Heat transfer co-efficient and its interpretations 3.5 Dimensional analysis applied to forced and 	CO3
TSO 4b. TSO 4c. TSO 4d. TSO 4e.	 Classify different types of heat exchanger. Determine LMTD for parallel and counter flow heat exchanger. Test the fouling factor of a given heat exchanger. Explain the use of NTU in heat exchanger. Describe the design parameter o design heat exchanger. Calculate mean temperature difference and outlet temperature of working fluid 	 natural convection 3.6 Dimensionless number and their physical significance Unit-4.0 Heat Exchanger 4.1 Different Types of Heat exchangers, Parallel flow, counter flow, cross flow heat exchanger evaporator and condenser. 4.2 Overall Heat transfer coefficient, Log mean temperature difference (LMTD), effectiveness of heat exchanger Number of transfer unit (NTU). 4.3 fouling factor 4.4 Design of heat-exchange equipment 4.5 Mean temperature difference, calculating the outlet temperature of working fluids 	CO4

Major Theory Session O	utcomes (TSOs)	Units	Relevant COs Number(s)
<i>TSO 5a.</i> Determine the radiative between two given su		nit-5.0 Thermal Radiation	CO5
TSO 5b. Calculate emissivity o body.	f the given plane 5.1	1 Basic radiation concepts, Black body radiation, Grey body, emissive power,	
<i>TSO 5c.</i> Describe the irradiation given solid.	on and radiosity of a 5.2	emissivity, reflectivity, transmissivity 2 Law of radiation-Plank's, Wein's	
TSO 5d. Explain the concept of	shape factor.	displacement, Stefan Boltzmann, Kirchoff's.	
TSO 5e. Interpretation of Four	ier's law, 5.3	3 Irradiation, Radiosity, Concept of shape factor, Radiation shield.	
<i>TSO 5f.</i> Describe Electrical ana <i>TSO 5g.</i> Explain critical radius of	0,	4 Electrical Analogy,	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2425603A

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1. Apply Fourier's law of heat conduction.	1.	Determine Thermal conductivity of a metal rod.	CO1
<i>LSO 1.2.</i> Determine Thermal conductivity of given material	2.	Determine Thermal Conductivity of Liquid	CO1
	3.	determine the co-efficient of thermal conductivity of insulating powder	CO1
	4.	Determine of overall heat transfer coefficient of a given composite wall	CO1
LSO 1.3. Select insulating material	5.	Find critical radius of insulating material.	CO1
LSO 2.1. Determine heat transfer coefficient and efficiency of given fin	6.	Determine Effectiveness on a Metallic fin	CO2
	7.	Determine the heat transfer coefficient, fin efficiency and temperature distribution along the length of a pinfin in natural convection.	CO2
	8.	Determine the heat transfer coefficient, efficiency and temperature distribution of a pin fin in forced convection.	CO2
LSO 3.1. Heat transfer coefficient through natural and forced convection	9.	Determine the heat transfer co-efficient in natural convection for vertical tube	CO3
	10.	Determine the heat transfer co-efficient in forced convection for hot air flowing through horizontal tube	CO3
LSO 4.1. Use shell and tube type heat exchanger.	11.	Find coefficient of heat transfer from shell and tube heat exchanger.	CO4
LSO 4.2. Use counter and parallel flow heat exchanger	12.	compare temperature distribution, heat transfer rate, overall heat transfer coefficient in parallel flow and counter flow.	CO4
	13.	Determination of LMDT and Effectiveness in a Parallel Flow and Counter Flow Heat Exchangers.	CO4
<i>LSO 5.1.</i> Determine Stefan-Boltzman constant	14.	Determine the Stefen-Boltzman constant of radiation heat transfer.	CO5

Practical/Lab Session Outcomes (LSOs)			Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 5.2.	Determine emissivity of the given surface	15.	Measure emissivity of a test plate surface	CO5
LSO 5.3.	Determine critical heat flux across the given wire	16.	Determine critical heat flux values at different bulk temperatures and to observe the boiling phenomenon	CO5
LSO 5.4.	Determine COP of the given system	17.	Determine the COP of vapour compression refrigeration system.	CO5

- L) Suggested Term Work and Self Learning: 2425603A Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - Derive a general 3 dimensional conduction equation in Cartesian coordinates.
 - Explain initial conditions and boundary conditions of I, II & III kind.
 - Derive an expression for critical thickness of insulation for a cylinder.
 - Derive an expression for temperature distribution and heat transfer from an extended rectangular surface of finite length with end insulation.
 - Explain physical significance of Biot and Fourier numbers.
 - Explain Heisler Charts and their significances in solving transient conduction problems

b. Micro Projects:

- Construct a working model of a shell and tube heat exchanger.
- Prepare a list of different types of heat exchanger used in thermal power plants.
- Prepare a list of conducting and insulating materials on the basis of thermal conductivity.
- Develop prototype model of different types of fins used in different machine and equipment's.

c. Other Activities:

- 1. Seminar Topics:
 - Visual representation of heat exchanger in various parts of thermal power plants.
 - Representation of heat transfer in Refrigerator and AC.
 - Adverse effect of thermal radiation on human body.
 - How to reduce fouling factor to increase heat transfer.
 - Fundamental difference among all three modes of heat transfer.
- 2. Visits:
 - Visit nearby thermal power plant to gain practical knowledge of different heat exchanger like economizer, Air preheater, Superheater Cooling tower and condenser.
 - Visit the industry which manufacture different types of heat exchanger.
- 3. Self-Learning Topics:
 - Thermal conductivity in different medium.
 - Necessity of fins in different machines.
 - LMTD and NTU in Heat exchanger.
 - Concepts of Black body in thermal radiation.
 - Natural convection process.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix									
	Theory Asses	sment (TA)**	Term W	ork Assessn	nent (TWA)	Lab Assessment (LA) [#]				
Cos	Progressive End Theory Theory Assessment Assessment (ETA) OS (PTA)				•	Progressive Lab Assessment	End Laboratory Assessment			
205	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)			
	Sem Test			Projects	Activities*					
CO-1	25%	25%	20%	25%	34%	30%	30%			
CO-2	15%	15%	15%	30%	33%	15%	15%			
CO-3	25%	25%	20%	15%	-	10%	10%			
CO-4	20%	20%	25%	30%	33%	20%	20%			
CO-5	15%	15%	20%	-	-	25%	25%			
Total	30	70	20 20 10			20	30			
Marks			I	50		1				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

The percentage given are approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Introduction to Heat Transfer	12	CO1	20	4	4	12
Unit-2.0 Fins	08	CO2	10	3	3	4
Unit-3.0 Convection	10	CO3	15	5	5	5
Unit-4.0 Heat Exchanger	10	CO4	15	3	5	7
Unit-5.0 Thermal Radiation	08	CO5	10	5	2	3
Total	48	-	70	20	19	31

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant		PLA/ELA	
S.	Laboratory Practical Titles	COs	Perfor	mance	Viva-
No.		Number(s)	PRA*	PDA**	Voce
		Number(S)	(%)	(%)	(%)
1.	Determine Thermal conductivity of a metal rod.	CO1	40	50	10
2.	Determine Thermal Conductivity of Liquid	CO1	40	50	10
3.	determine the co-efficient of thermal conductivity of insulating powder	C01	40	50	10
4.	Determine of overall heat transfer coefficient of a given composite wall	C01	40	50	10
5.	Find critical radius of insulating material.	CO1	40	50	10
6.	Determine Effectiveness on a Metallic fin	CO2	40	50	10
7.	Determine the heat transfer coefficient, fin efficiency and temperature distribution along the length of a pinfin in natural convection.	CO2	40	50	10
8.	Determine the heat transfer coefficient, efficiency and temperature distribution of a pin fin in forced convection	CO2	40	50	10
9.	Determine the heat transfer co-efficient in natural convection for vertical tube	CO3	40	50	10
10.	Determine the heat transfer co-efficient in forced convection for hot air flowing through horizontal tube	CO3	40	50	10
11.	Find coefficient of heat transfer from shell and tube heat exchanger.	CO4	40	50	10
12.	compare temperature distribution, heat transfer rate, overall heat transfer coefficient in parallel flow and counter flow.	CO4	40	50	10
13.	Determination of LMDT and Effectiveness in a Parallel Flow and Counter Flow Heat Exchangers.	CO4	40	50	10
14.	Determine the Stefen-Boltzman constant of radiation heat transfer.	CO5	40	50	10
15.	Measure emissivity of a test plate surface	CO5	40	50	10
16.	Determine critical heat flux values at different bulk temperatures and to observe the boiling phenomenon	CO5	40	50	10
17.	Determine the COP of vapour compression refrigeration system.	CO5	40	50	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

Semester -VI

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S.	Name of Equipment,	Broad	Relevant
No.	Tools and Software	Specifications	Experiment/Practical Number
1.	Thermal conductivity apparatus, Metal bar, Electric heater, thermocouple	Length of metal bar 425mm, diameter of metal bar 25mm, No. of thermocouple mounted on bar 2	1
2.	Experimental setup for thermal conductivity of liquid	Aluminum Cylinder: approx. size 100 mm in diameter and 100 mm in length. thermocouples – to measure the oil temperature at intervals of 25 mm, Heaters, cooling arrangements, Thermocouples: K-type to measure temperature, control panel, heat controller or regulator, channel sector, digital voltmeter and ammeter	2
3.	Experimental setup for thermal conductivity of insulating material	Insulating sphere: consists of two concentric spheres. The inner and outer sphere have 250mm and 300 mm diameters respectively. The space between the spheres is filled with insulating powder. Oil heater, Digital voltmeter and ammeter to measure power input, Digital temperature indicator to measure temperature, Thermostat	3
4.	Composite wall apparatus	stop clock, measuring jar,Band heater, Thermocouples: k – type, Channel selector and digital temperature display, Heat control or regulator, Thermostat, Control panel	4
5.	Critical radius of insulating materials Apparatus.	The apparatus consists of one metal cylinder in which heater is fitted. The insulating material as lagging material is covered around the cylinder.	5
6.	Experimental setup to for testing effectiveness of Metallic fin	-	6
7.	Pin fin apparatus	A metallic fin of circular cross section of length 'L' is fitted in the rectangular duct. Thermocouples are provided on the surface of the fin. The duct is provided with a fan to contact the air flow with the help of regulator, multi-channel temperature indicator, ammeter and voltmeter.	7,8
8.	A metallic tube of diameter (d) 45 mm and length (L) 450mm with a electrical heater coil along the axis of the tube	 Seven thermocouples are fixed on the tube surface. Control panel instrumentation consists of multichannel digital display Temperature indicator to measure surface temperature T1 to T7 of the tube and ambient temperature T8. Digital ammeter and voltmeter to measure power input to the heater. Regulator to control the power input to the heater. Front transparent acrylic enclosure for safety of the tube when not in use. 	9

S.	Name of Equipment,	Broad	Relevant
No.	Tools and Software	Specifications	Experiment/Practical
			Number
9.	Heat exchanger tube-the	Thermally insulated outside to prevent heat transfer	10
	tube	losses to the atmosphere.	
		 Heater, wattage :500 watts (approx.) 	
		 Regulator to control the power input to the heater 	
		 Volt and Ampere Meters to measure power input to the heater 	
		 ThermocouplesT1 and T7 to measure air temperature at the inlet and outlet of the duct. T2 - T6 to measure test 	
		specimen temperatures.	
		Channel selector	
		 Digital temperature indicator 	
		 Blower: to blow air through the heat exchanger. 	
		 Orifice meter with manometer to air flow rate from the 	
		blower.	
		 Control panel to house the whole instrumentation 	
10.	Heat transfer coefficient	Shell and tube heat exchanger.	11
	from shell and tube heat		
	exchanger		
11.	Parallel and counter flow	Concentric tubes- inner tube made of copper and outer tube is	12,13
	heat exchanger	made of Stainless steel.	
		Thermocouple	
12.	Stefan Boltzman's	Main switch, thermo couple, selector switch, Digital	14
	Apparatus	temperature indicator, test chamber with placement of thermocouples, water heating chamber with kettle element	
		fitted and a test chamber, thermo meter and a stop watch.	
13.	Emissivity apparatus	Two circular plate of identical dimension, Thermocouple,	15
10.		Diameter of plate is 150 mm	1.5
1.4	aritical boat flux catura	-	16
14.	critical heat flux setup	Glass container – diameter: 200 mm(approx.), height 100 mm(approx), Heater for initial heating (Nichrome wire) (R1) – 1	16
		KW, Test heater (Nichrome wire, size: ϕ 12 mm) (R2), Length of	
		the test heater (R2) – 100 mm	
15.	Vapour compression test	Vapour compression test rig	17
10.	rig		1/

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Heat and Mass Transfer: Fundamentals and Applications	Yunus A. Cengel Afshin J. Ghajar	McGraw Hill, 6 th Ed., 2020 ISBN-13: 978-9390185283
2.	Heat and mass transfer	R.K. Rajput	S.Chand & Co. New Delhi , 7 th ed.,2019 ISBN-13: 978-9352837212
3.	Essentials of Radiation Heat Transfer	C. Balaji	Springer Nature Switzerland AG,2022 ISBN-13: 978-3030626198
4.	Engineering Heat and Mass Transfer	Mahesh M. Rathore	Laxmi Publications; 4 th ed. 2023 ISBN-13: 978-8131806135
5.	Advances in Heat and Mass Transfer in Micro/Nano Systems	Junfeng Zhang, Ruijin Wang	Mdpi AG, 2022 ISBN-13: 978-3036549682
6.	Heat and mass transfer	P. K.Nag	S Chand & Co. New Delhi 2011 ISBN:9788187433514

7.	Heat and mass transfer	Dr. D.S. Kumar	S.K. Kararia & sons, New Delhi,2011 ISBN: 978-81-265-4396
8.	Incropera's Principles of Heat and Mass Transfer	Frank P. Incropera David P. Dewitt Theodore L. Bergman Adrienne S. Lavine	Wiley India Edition, 2018 ISBN-13: 978-8126578245

(b) Online Educational Resources:

- 1) www.nptel.swayam
- 2) <u>www.</u>discoveryforengineers.<u>com</u>
- 3) <u>https://youtu.</u>be/rxTK_SvSmvs
- 4) <u>https://youtu.be/Er1GLURinDg</u>
- 5) https://youtu.be/2LaqQhxaXkk
- 6) https://youtu.be/Och17wpOYtc
- 7) https://youtu.be/wx16m7UP0D0
- 8) https://youtu.be/FwE_muP2pMY
- 9) https://youtu.be/nI1TvJjaYSk
- 10) https://youtu.<u>be</u>/aEd9Rj86UoU
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Heat and mass transfer data book
- 2. Lab Manuals
- 3. Conference

Diplo	ma in Mechanical Engineering	Semester -VI	SBTE, Bihar
A)	Course Code	: 2425603B(T2425603B/P2425603B/S2425603B)	
B)	Course Title	: Power Plant Engineering	
C)	Pre- requisite Course(s)	: Applied thermodynamics and Heat transfer	

:

D) Rationale

This course aims at providing an overview of different power plants and detailing the role of mechanical engineer in their construction, operation and maintenance for addressing the underlying concepts and their applications. This course on one side deals with conventional fossil fuel based power plants like Thermal and Gas power plants while on the other side it also try to develop understanding of Nuclear, Hydro and Solar Power plants, for which India has set high targets of employing renewable sources of energy for all possible applications to reduce the dependency on the fossil fuels.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Explain the operation and maintenance procedure of Coal thermal power plant components.
- **CO-2** Explain the operation and maintenance procedure of Gas power plant components.
- **CO-3** Identify the components and process involved in Nuclear power plant.
- **CO-4** Explain the operation and maintenance procedure of Micro/Pico Hydro power plant and Solar power plant components.
- **CO-5** Outline the safety, economic and environmental aspects related to different power plants.

Course Outcomes (COs)		Programme Specific Outcomes* (PSOs)							
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	1	-	2	-	-	-		
CO-2	3	1	-	2	-	-	-		
CO-3	3	-	-	2	-	-	-		
CO-4	3	1	-	2	-	-	-		
CO-5	3	-	-	2	3	-	-		

F) Suggested Course Articulation Matrix (CAM):

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course				neme of Stud Iours/Week	•	
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
		L	Т				
2425603B	Power plant Engineering	03	-	04	02	09	06

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			A	ssessment S	cheme (Mar	·ks)		
	Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(+TWA+LA)	
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2425603B	Power plant Engineerin g	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2425603B

Ма	jor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1a.	Identify the elements of coal thermal power plant.	Unit-1.0 Coal Thermal Power Plant	CO1
TSO 1b.	Explain the working of the given components of Coal thermal power plant like boiler, condenser, cooling tower and economizer etc.	1.1 General layout of modern coal thermal power plant and present scope of power generation in India.1.2 Working of Rankine cycle.	
TSO 1c.	Compare the salient features of given type of high pressure boiler.	1.3 Operation and Maintenance of Water treatment unit, Coal and ash handling unit and	
TSO 1d.	List the salient features of Fluidized bed combustion boilers	Natural Draught system. 1.4 High Pressure Boilers – Classification;	
TSO 1e. TSO 1f.	Explain the given control system of the steam power plant. Outline the maintenance procedure of a modern Coal thermal power plant.	Construction and principle of working of Lamont boiler, Benson boiler, Loeffler boiler, Velox boiler, Schmidt Hartman boiler, Ramsin boiler;	
		 Fluidized bed combustion boilers (FBC): principle, need, types, various arrangement, control system and advantages over other boiler systems. 	
		 Indian Boiler Regulation Act Maintenance procedure of major components of high pressure and FBC boilers. 	
		 Operation and Maintenance of Steam turbine, Steam nozzle, Steam condenser, Cooling tower, Economizer, Heat exchanger. 	
TSO 2a.	Identify the given component(s) of gas turbine power plant.	Unit-2.0 Gas Turbine Power Plant	CO2
TSO 2b.	Explain the working of the given component (s) of Gas power plant.	2.1 Classification, open and closed cycle gas turbine	
TSO 2c.	Explain the preventive maintenance of given major component of Gas power plant.	2.2 Gas turbine fuel2.3 Brayton cycle: Optimum pressure ratio for	
TSO 2d.	Explain the predictive maintenance of given major component of gas power plant.	 maximum efficiency, work ratio, airrate, specific fuel consumption rate 2.4 Effect of operating variable on thermal efficiency and work. 2.5 Operation and Maintenance of main components of Gas turbine power plant. 	
TSO 3a.	Sketch labeled arrangement of given nuclear power plant	Unit-3.0 Nuclear Power Plant	CO3
	Explain the working of given reactor and other components of Nuclear power plant. Compare the calorific value of the given type of nuclear fuel.	 3.1 Introduction to nuclear fission and fusion, 3.2 Types of nuclear fuels, nuclear power plant fuels in India 3.3 Components of nuclear reactor, pressurized 	
	Interpret the regulation of nuclear power plant smoothly. Explain the methods of disposal of different	3.3 Components of nuclear reactor, pressurized water reactor and boiling water reactor3.4 Nuclear waste and its disposal	
TSO 4a.	Nuclear wastes. Identify the given component(s) of Hydro/Solar power plants.	Unit-4.0 Hydroelectric power plant and Solar power plant	CO4

Maj	or Theory Session Outcomes (TSOs)		Units	Relevant COs Number(s)
	Explain the working of the given component (s) of Hydro/Solar power plants.	4.1	Introduction of Hydro power plant and Solar power plant, and its location in India.	
	Explain the maintenance procedure of given major component of Hydro/Solar power plants.	4.2 4.3	Operation and Maintenance of Micro and Pico Hydro power plant components. Operation and Maintenance of Solar power plant components.	
TSO 5a.	Estimate the cost of electricity in given situation using simple numerical problem situation.	Uni	t-5.0 Safety, Maintenance cost, Economic and Environmental Aspects	CO5
TSO 5b.	Calculate the performance parameter of the given power plant using simple numerical problem situation.	5.1 5.2	Safety (protective) Equipment, safety training Types, schedule, and cost of maintenance for different power plant	
TSO 5c.	Outline the common safety practices in a typical power plant.	5.3	Load distribution parameter, load curve, comparison of site selection criteria	
TSO 5d.	Estimate capital and operating costs in the given power plant.	5.4	Capital and operating cost of different power plant	
TSO 5e.	Explain pollution control techniques and waste disposal options in the given power plant	5.5	Pollution control technique and waste disposal option of different power plant	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2425603B

Practical/Lab Session Outcomes (LSOs)		S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1. LSO 1.2.	Identify the given component(s) used in Coal thermal power plant. Explain the operation of the given component(s) of Coal thermal power plant.		Identify and demonstrate working of various components used in Coal thermal power plant using models, charts, visits, simulated and real videos.	CO1
LSO 2.1.	Maintain the condenser, economizer etc. components of Coal thermal power plant.	2.	Demonstrate maintenance procedures of main components of Coal thermal power plant using models, charts, visits, simulated and real videos	CO1
LSO 3.1.	Explain the construction details of the given nozzle.	3.	Study the different type of steam nozzles.	CO1
LSO 3.2.	Maintain the given nozzle of the steam power plant.			
LSO 4.1.	Identify the given component(s) of High Pressure Boiler.	4.	Demonstrate working of any two types of High Pressure Boilers using models, charts, visits,	CO1
LSO 4.2.	Explain the operation of the given High Pressure Boiler.		simulated and real videos.	
LSO 5.1.	Identify component(s) of the given Fluidized Bed Combustion Boiler.	5.	Demonstrate Fluidized Bed Combustion Boilers using models, charts, visits, simulated and real	CO1
LSO 5.2.	Explain the operation of the given Fluidized Bed Combustion Boiler.		videos.	
LSO 6.1.	Identify component(s) of the given Electro Static Precipitator.	6.	Demonstrate the working of Electro Static Precipitators using model, charts, visits, simulated and real videos.	CO1
LSO 6.2.	Explain the operation of the given Electro Static Precipitator.			
LSO 7.1.	Identify the component(s) of the given Temperature and Feed Water Control systems.	7.	Demonstrate the working of Temperature and Feed Water Control systems using model, charts, visits, simulated and real videos.	CO1

Practi	cal/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 7.2.	Explain the operation of the given Temperature and Feed Water Control systems.			
LSO 8.1.	Identify the given Temperature and Coal and Ash handling system.	8.	Identify and demonstrate working of Coal and Ash handling system.	CO1
LSO 8.2.	Explain the operation of the given Coal and Ash handling system.			
LSO 9.1.	Prepare the model diagram of natural draught system of the steam power plant.	9.	Study of Natural Draught system.	CO1, CO2
LSO 9.2.	Explain the operation of the given Natural Draught system.			
LSO 10.1.	Prepare the model, chart of the given water treatment plant.	10.	Develop the working model of Water treatment plant.	CO1, CO2
LSO 10.2.	Explain the operation of the given Water treatment plant.			
LSO 11.1.	Identify the given component(s) of cooling tower.	11.	Develop the working model of Cooling tower.	CO1, CO2
LSO 11.2.	Explain the operation of the given Cooling tower.			
	Identify the given component(s) used in Gas thermal power plant. Explain the operation of the given component(s) of Gas thermal power plant.	12.	Identify and demonstrate working of various components used in Gas thermal power plant using models, charts, visits, simulated and real videos	CO2
LSO 13.1.	Maintain the given component(s) of Gas thermal power plant.	13.	Demonstrate maintenance procedures of main components of Gas thermal power plant using models, charts, visits, simulated and real videos	CO2
LSO 14.1.	Maintain Fuel nozzles, Liners, Spark plugs, Flex hoses, Check valves etc. component of Gas turbine power plant	14.	Maintain Fuel nozzles, Liners, Spark plugs, Flex hoses, Check valves etc. component of Gas turbine power plant	CO2
	Identify the given component(s) used in Nuclear power plant. Explain the operation of the given component(s) of Nuclear power plant.	15.	Identify and demonstrate working various components used in Nuclear power plant using models, charts, visits, simulated and real videos.	CO3
	Identify the given component(s) used in Micro/Pico Hydro power plant. Explain the operation of the given components of Micro/Pico Hydro power plant.	16.	Identify and demonstrate working of various components used in Micro/Pico Hydro power plant using models, charts, visits, simulated and real videos.	CO4
LSO 17.1.	Maintain the given component of Micro/Pico Hydro power plant.	17.	Demonstrate maintenance procedures of main components of Micro/Pico Hydro power plant using models, charts, visits, simulated and real videos	CO4
	Identify the given component(s) used in Solar power plant. Explain the operation of the given component(s) of Solar power plant.	18.	Identify and demonstrate working of various components used in Solar power plant using models, charts, visits, simulated and real videos.	CO4
LSO 19.1.	Maintain the given component(s) of Solar power plant.	19.	Demonstrate maintenance procedures of main components of Solar power plant using	CO4

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
		models, charts, visits, simulated and real videos	
LSO 20.1. Identify the various energy consuming elements in the given setup.	20.	Calculate cost of electricity consumption of any one Laboratory.	CO5
LSO 20.2. Estimate the cost of electricity consumption.			

- L) Suggested Term Work and Self Learning: S2425603B Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- Prepare/Download the specifications of followings:
 - i. Coal Thermal Power plant equipment.
 - ii. Gas turbine power plant equipment and elements.
 - iii. Nuclear power plant equipment and elements.
 - iv. Hydro power plant equipment and elements.
 - v. Solar power plant equipment and elements.
- Prepare/Download control system components in the followings:
 - i. Coal Thermal Power plant
 - ii. Gas turbine power plant equipment
 - iii. Nuclear power plant equipment
 - iv. Hydro power plant equipment
 - v. Solar power plant equipment
- Prepare/Download the safety practices and pollution control approaches in the followings:
 - i. Coal Thermal Power plant
 - ii. Gas turbine power plant equipment
 - iii. Nuclear power plant equipment
 - iv. Hydro power plant equipment
 - v. Solar power plant equipment
- Download the maintenance procedure of the main equipment of the followings:
 - i. Coal Thermal Power plant
 - ii. Gas turbine power plant equipment
 - iii. Nuclear power plant equipment
 - iv. Hydro power plant equipment
 - v. Solar power plant equipment
- Collect information/videos of control systems of power plant.
- Collect information/videos about cogeneration plant.
- Perform comparative study of various parameters of performance evaluation of a power plant.
- Measure operating parameters of Boiler using appropriate instruments.
- Collect information regarding preventive, predictive and breakdown maintenance of various power plants.
- Develop maintenance procedure for preventive and predictive maintenance of a typical Hydro Power Plant and its components.

- Develop maintenance procedure for preventive and predictive maintenance of typical FBC boilers and its components.
- Develop maintenance procedure for preventive and predictive maintenance of a typical High-pressure boiler and its components
- Develop maintenance procedure for preventive and predictive maintenance of a typical Steam Power Plant and its components.
- Develop maintenance procedure for preventive and predictive maintenance of a typical Gas Power Plant and its components.
- Develop maintenance procedure for preventive and predictive maintenance of a typical Micro/Pico Hydro Power Plant and its components.
- Develop maintenance procedure for preventive and predictive maintenance of a typical Solar Power Plant and its components.

c. Other Activities:

- 1. Seminar Topics:
 - Steam generator.
 - Scope of solar energy.
 - Present scenario of nuclear power plant.
 - Safety (protective) Equipment in various power plants.
 - Capital and operating cost of different power plants.
 - Pollution control technique and waste disposal option of different power plants.
- 2. Visits:
 - Visit to any Power plant and prepare a report consisting of
 - i Various components
 - ii Operation of power plant
 - iii Control system
 - iv Safety equipment and practices
 - v Maintenance of components of power plant observed.
 - vi Various advanced systems
 - vii Various standards
- 3. Self-Learning Topics:
 - Solar Panels
 - Hydel energy
 - Pico Hydro Power Plants
 - Safety practices in various power plants
 - Fluidized Bed Combustion Boilers
 - Pollution control technique
 - Waste from different power plants
 - Waste disposal approached used in different powr plants

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Theory Asses	sment (TA)**	Term W	ork Assessn	nent (TWA)	Lab Assessment (LA) [#]		
COs	Progressive End Theory Theory Assessment Assessment (ETA) (PTA)		0	Progressive Lab Assessment	End Laboratory Assessment			
	Class/Mid		Assignments Micro		Other	(PLA)	(ELA)	
	Sem Test			Projects	Activities*			
CO-1	25%	25%	25%	20%	20%	40%	20%	
CO-2	20%	20%	20%	20%	20%	15%	20%	
CO-3	15%	15%	15%	20%	20%	15%	20%	
CO-4	25%	25%	25%	20%	20%	15%	20%	
CO-5	15%	15%	15%	20%	20%	15%	20%	
Total	30	70	20 20 10			20	30	
Marks				50		1		

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

• The percentage given are approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	ETA (Marks)			
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0 Coal Thermal Power Plant	12	CO1	16	5	6	5	
Unit-2.0 Gas Turbine Power Plant	08	CO2	16	4	6	6	
Unit-3.0 Nuclear Power Plant	08	CO3	12	3	4	5	
Unit-4.0 Hydroelectric Power Plant and Solar Power Plant	10	CO4	16	4	6	6	
Unit-5.0 Safety, Maintenance, Economic and Environmental Aspects	10	CO1, CO2, CO3, CO4, CO5	10	4	3	3	
Total	48	-	70	20	25	25	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

~		Relevant	PLA/ELA			
S. No.	Laboratory Practical Titles	COs	Perfor	Viva-		
		Number(s)	PRA*	PDA**	Voce	
		Number(S)	(%)	(%)	(%)	
1.	Identify and demonstrate working of various components used in Coal thermal power plant using models, charts, visits, simulated and real videos.	C01	30	60	10	
2.	Demonstrate maintenance procedures of main components of Coal thermal power plant using models, charts, visits, simulated and real videos	CO1	30	60	10	
3.	Study the different type of steam nozzles.	CO1	30	60	10	
4.	Demonstrate working of any two types of High Pressure Boilers using models, charts, visits, simulated and real videos.	CO1	30	60	10	
5.	Demonstrate Fluidized Bed Combustion Boilers using models, charts, visits, simulated and real videos.	CO1	30	60	10	
6.	Demonstrate the working of Electro Static Precipitators using model, charts, visits, simulated and real videos.	CO1	30	60	10	
7.	Demonstrate the working of Temperature and Feed Water Control systems using model, charts, visits, simulated and real videos.	CO1	30	60	10	
8.	Identify and demonstrate working of Coal and Ash handling system.	CO1	30	60	10	
9.	Study of Natural Draught system.	CO1, CO2	30	60	10	
10.	Develop the working model of Water treatment plant.	CO1, CO2	30	60	10	
11.	Develop the working model of Cooling tower.	CO1, CO2	30	60	10	
12.	Identify and demonstrate working of various components used in Gas thermal power plant using models, charts, visits, simulated and real videos	CO2	30	60	10	
13.	Demonstrate maintenance procedures of main components of Gas thermal power plant using models, charts, visits, simulated and real videos	CO2	30	60	10	
14.	Maintain Fuel nozzles, Liners, Spark plugs, Flex hoses, Check valves etc. component of Gas turbine power plant	CO2	30	60	10	
15.	Identify and demonstrate working various components used in Nuclear power plant using models, charts, visits, simulated and real videos.	CO3	30	60	10	
16.	Identify and demonstrate working of various components used in Micro/Pico Hydro power plant using models, charts, visits, simulated and real videos.	CO4	30	60	10	
17.	Demonstrate maintenance procedures of main components of Micro/Pico Hydro power plant using models, charts, visits, simulated and real videos	CO4	30	60	10	
18.	Identify and demonstrate working of various components used in Solar power plant using models, charts, visits, simulated and real videos.	CO4	30	60	10	
19.	Demonstrate maintenance procedures of main components of Solar power plant using models, charts, visits, simulated and real videos	CO4	30	60	10	
20.	Calculate cost of electricity consumption of any one Laboratory.	CO5	30	60	10	

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

- **Note:** This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.
- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/ Practical Number			
1.	Model of Coal thermal power plant.					
2.	Steam Power plant	Working model of Steam Power plant- oil fired Boiler (min Capacity- 0.5KW), Reaction steam Turbine, Surface Condenser, generator, power distribution system to power bank.				
3.	Condenser and Economizer	Condenser, economizer etc. components of Steam power plant.				
4.	Loffler Boiler	Working model of Loffler Boiler	-			
5.	Benson Boiler	Working model of Benson Boiler				
6.	Electro static Precipitator	Working model of Electro static Precipitator				
7.	FBC Boiler	Model of FBC Boiler	-			
8.	Feed water control system	Working model of Feed water control system	-			
9.	Temperature sensor and temperature sensing system	Temperature sensor and temperature sensing system				
10.	Model of gas power plant including major components	Working model including all major components	12, 13, 14			
11.	Model of Nuclear power plant	Working model including all major components	15			
12.	Model of Hydel power plant	Working model including all major components	16, 17			
13.	Model of Solar power plant	Working model including all major components	18, 19			
14.	Thermodynamic Simulation Software	AxCYCLE Software: Thermodynamic Simulation Software for heat balance calculations of heat production and energy conversion cycles.	All			

S. No	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/ Practical Number
15.	Safety equipment used in power plant	Various safety equipment used in power plant	All

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Power plant engineering	P.K. Nag	McGraw-Hill Education (4 th edition) ISBN13, 978-9339204044
2.	Power plant technology	M.M. El -Wakil	McGraw-Hill Education (1 st edition) ISBN-13, 978-0070702448
3.	Power plant engineering	P C SHARMA	S k. kataria sons ISBN-13, 978-9350143841
4.	Thermal engineering	R K RAJPUT	Laxmi Publication (11 th edition) ISBN-13,978-8131808047

(b) Online Educational Resources:

- 1. https://nptel.ac.in/
- 2. https://npti.in/default.aspx
- 3. https://www.youtube.com/watch7v-hooifWJIjY
- 4. https://www.youtube.com/watch7vMfCmYbupS4u-k
- 5. https://www.youtube.com/watch?v=rEJKiUYjWIE
- 6. https://www.youtube.com/watch?v=-hooifWJ1jY
- 7. https://www.youtube.com/watch?v=Uhjhufhg3Xk
- 8. https://www.youtube.com/watch?v=_UwexvaCMWA
- 9. https://www.youtube.com/watch?v=_AdA5d_8Hm
- 10. https://www.youtube.com/watch?v=ChvI2v85fsU
- 11. https://www.youtube.com/watch?v=IdPTuwKEfmA
- 12. https://www.youtube.com/watch?v=XjbczcFNrNU
- 13. https://www.youtube.com/watch?v=0rsPFdkwR0
- 14. https://www.youtube.com/watch?v=gDVukHOxURc
- 15. https://www.youtube.com/watch?v=02p5AKP6W0Q
- 16. https://www.youtube.com/watch?v=FXBqvLWxbr0
- 17. https://www.youtube.com/watch?v=dCPfHifMbOk
- 18. https://www.youtube.com/watch?v=b6-n0pFu5d4
- 19. https://www.youtube.com/watch?v=iUXHzYLgrB0
- 20. https://www.youtube.com/watch?v=ZssGiY6rfYE
- 21. https://www.youtube.com/watch?v=F01AFJe2j2A
- 22. https://www.youtube.com/watch?v=c6wDRQMD-YE
- 23. https://www.youtube.com/watch?v=ks-G4FYVtg
- 24. https://www.youtube.com/watch?v=H6EClYcfXKw
- 25. https://www.youtube.com/watch?v=KmYbupS4u-k
- 26. https://www.youtube.com/watch?v=rEJKiUYjW1E
- 27. https://arupatan.in/info/959/coal_mill_operation_power_plant/
- 28. https://www.youtube.com/watch?v=KmYbupS4u-k
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

- (c) Others:
 - 1. conference
 - 2. Lab Manuals

Diploma in Mechanical Engineering		Semester -VI	SBTE, Bihar
A)	Course Code	: 2425603C(T2425603C/P2425603C/S2425603C)	
B)	Course Title	: Press Tool, Jigs and Fixtures.	
C)	Pre- requisite Course(s)	: Manufacturing Engineering.	
D)	Rationale	:	

D) Rationale

Press Tool, Jigs and Fixtures is the industrial production tools. Press tools are commonly used in hydraulic, pneumatic and mechanical presses to produce components at high volumes. Mass production methods demand a fast and easy method of positioning work for accurate operations on it. Jigs and fixtures are production tools used to accurately manufacture duplicate and interchangeable parts. This course on Press Tool, Jigs and Fixtures tries to develop understanding of the process parameters and handling of above tools among the students. It also covers the detailed constructional and design of press tools, jigs and fixtures. The knowledge gained through this course will help the students to develop a habit of industry oriented.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- CO-1 Select relevant press tools and press tools operations,
- CO-2 Use relevant die and punch for forging simple components.
- CO-3 Use relevant jig and fixtures and clamping device for components and machining operations.

Outcomes*

(PSOs)

PSO-2

- CO-4 Use relevant jig boring machine for the given situations.
- CO-5 Design press tools, jigs and fixtures suitable to different machining operations.

Programme Programme Specific Outcomes(POs) Course PO-2 Outcomes PO-1 PO-3 PO-4 PO-5 PO-6 PO-7 PSO-1 Basic and Proble Engineering Engineering Project Life Long (COs) Design/ Discipline m Tools Practices for Management Learning Developmen Specific Analysis tof Solutions Society, Knowledge Sustainability and Environment CO-1 2 3 CO-2 3 2 1 2 1 -CO-3 3 2 1 2 1 1 CO-4 3 2 1 2 1 -1

Suggested Course Articulation Matrix (CAM): F)

3 Legend: High (3), Medium (2), Low (1) and No mapping (-)

2

3

CO-5

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

1

3

2

3

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)							
Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	т						
	Press Tool,								
2425603C	Jigs and	03	-	04	02	09	06		
	Fixtures.								

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			l	Assessment	Scheme (M	larks)		
		-	ssessment TA)	Learning A	rk & Self- ssessment		essment A)	(TA+TWA+LA)
0				(TV	VA)			ΛL+
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
2425603C	Press Tool, Jigs and Fixtures.	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2425603C

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)	
TSO 1b. TSO 1c.	Explain the use of press tools and accessories. Select different types of press tool for the given situation with justification. Select suitable press tool in different operations for the given situation. Select relevant method for mounting punches and dies.	 Unit-1.0 Press Tools 1.1 Introduction to press tools. 1.2 Recent development in press tools. 1.3 press tools and accessories 1.4 Types of presses and Specifications 1.5 Cutting tools, bending tools, drawing tools, punching tools, blanking tools, notching tools, lancing tools, Embossing and Coining tools. 1.6 Effect of clearances and Stages of cutting operation. 1.7 Methods of mounting punches and dies. 	CO1	
TSO 2b. TSO 2c. TSO 2d. TSO 2e. TSO 2f.	Select suitable press working operation for given situation with justification. Explain clearances and its effect in punch and die operations. Calculate press tonnage for the given press tool component. Calculate blank size for the given simple part. Select the type of die for the given part with justification. Estimate the cost for developing a simple component by each operation Compare post processing operations on developed component	 Unit-2.0 Press Working 2.1 Press working operations - Cutting, bending drawing, punching, blanking, notching, lancing, Embossing and Coining. 2.2 Punch and die clearances for blanking and piercing, effect of clearance. 2.3 blanking and piercing tools, load variation during blanking-Calculation of press tonnage for blanking and piercing. 2.4 Bending allowances, bending methods. Bending pressure-calculation of blank size and press tonnage for drawing metal flow during drawing operations. 2.5 Die set components- punch and die shoe, guide pin, bolster plate, stripper, stock guide, feed stock, pilot. 2.6 Types of dies, simple, compound, combination and progressive dies. 	CO2	
TSO 3b. TSO 3c. TSO 3d. TSO 3e.	Differentiate between given jig and fixture. Select the suitable jigs for the given component with justification. Select the suitable fixtures for the given component with justification. Explain the principles of location and clamping with reference to the given work piece. Select different types of locators for the given situation. Select different types of clamping devices for the given situation.	 Unit-3.0 Jigs and fixtures: 3.1 Necessity for jigs and fixtures. 3.2 Definitions and concept of Jig and fixture. 3.3 Advantages of jigs and fixtures. 3.4 Elements of jigs and fixtures 3.5 Types of jigs: leaf jig, box & handle jig template jig, plate jig, indexing jig universal jig, vice jig-constructional details, working and application of above jigs. 3.6 Types of fixtures: vice fixtures, milling fixtures, boring fixtures, grinding fixtures- constructional details, working and application of above fixtures. 3.7 Basic principles of location: locating methods and devices, 	CO3	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
	 3.8 Types of locators – pins and studs, V block, cup and cone location points, adjustable locating points, special adjustable stops, location from finished holes in the work, Diamond pin locator, Cam operated 'V' locator, Quick action 'V ' locator, Six point location of a three legged object ,Location of a cylinder on a v-block 3.9 Basic principles of the clamping: types of clamps-lever clamp, hinged clamp, two-way clamp, swinging clamp, wedge clamp, eccentric clamping arrangement, quick action clamp, Cam operated clamp, Strap clamps quarter turn screw, Toggle clamp, Pneumatic and hydraulic clamps, Washers - 'C' washer, spherical and flat washer 	
TSO 4a. Explain jig boring.	Unit-4.0 Jig Boring:	CO3, CO4
 TSO 4b. Select the type of jig boring for the given situation. TSO 4c. Explain construction and working of jig boring. TSO 4d. Explain system of location of holes. 	 4.1 Introduction to jig boring. 4.2 Jig boring on vertical milling machine 4.3 Types jig boring machines: Open front machine, Cross rail type machine - constructional details & their working. 4.4 System of location of holes. 	
TSO 5a. Explain the design procedure for the given	Unit-5.0 Design of Press tool, jigs and fixtures.	CO5
Die and punch. <i>TSO 5b.</i> Explain the design procedure for given jig. <i>TSO 5c.</i> Explain the design procedure for given fixture	5.1 Design considerations and procedure for Die and punch.5.2 Design of simple, compound and progressive dies.	
	5.3 Design considerations and procedure for following jigs- Template jig, plate jig, universal jig, leaf jig.	
te: One major TSO may require more than one Theory s	5.4 Design considerations and procedure for following fixtures-turning fixture, milling fixture, grinding fixture, boring fixture, welding fixture.	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2425603C

Practic	al/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1. LSO 1.2.	Use press tools. Prepare a list of parameters for comparison among qualities.	1.	Analyze the effect of different press tools process parameters on the different materials such as material required, power required, time, surface finish, etc.	C01
LSO 1.3. LSO 1.4.	Use the methods of mounting of die and punch. Select components for mounting die and punch.	2.	Remount different types of die and punch set already available in your workshop.	CO1

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.5. Dismantle and assemble different press tools- Blanking die, piercing	3.	Dismantle the components of the given press tools as per assembly drawing.	C01
die and progressive die, compound die, V bending die, and drawing die	4.	Assemble the components of the given press tools as per assembly drawing.	CO1
LSO 2.1. Perform suitable press tool operation relevant to job development.	5.	Develop following job using suitable press tool operation. • washer • ring.	CO2
 LSO 2.2. Surf web for downloading readymade list of products develop by die punch operation. LSO 2.3. Perform suitable die punch 	6.	Download three models of job available on web and then develop them by using suitable die and punch operation.	CO2
operation.LSO 2.4.Choose the requirements of tools related to bending operation.LSO 2.5.Perform bending operation on the selected material w.r.t different parameters.	7.	Perform bending operation on two different material sheets and compare power requirement, time, surface finish etc.	CO2
LSO 3.1. Test the given fixtures	8.	Carry out load test on the given jigs & Fixtures.	CO3
	9.	Conduct the trial tests of fixture to ensure conformance to the standards	CO3
LSO 3.2. Measure the dimensions as per assembly drawing	10.	Measure the dimension of jigs and Fixture using measuring instrument like CMM or laser tracker	CO3
LSO 3.3. Analyze each and every jig and fixture in the workshop in context of function location and clamping facility	11.	Identify different jigs and fixtures available in workshop.	CO3
 LSO 3.4. Use of available 3D scanner. LSO 3.5. Develop 3D digital model using scanning approach. LSO 3.6. Develop job using embossing process. 	12.	Perform embossing operation on a suitable size of material available in your workshop.	CO3
LSO 3.7. Prepare list of press tool operation available workshop. LSO 3.8. Compare post processing operations on developed component	13.	Prepare a list of different press tools operations available in your workshop and estimate the cost for developing a simple component by each operation.	CO3
LSO 3.9. Identify the components of hydraulic press, surface and cylindrical grinder etc. available in work shop	14.	Identify and list different components of the given types of press and machines.	CO3
<i>LSO 4.1.</i> Identify and list different components of jig boring machines available in the work shop	15.	Identify and list different components of jig boring machines.	CO4
LSO 4.2. Identify tools & equipment's for the given job.	16.	Identify tools & equipment's as per desired specifications for drilling and tapping.	CO4
LSO 4.3. Set the job and cutting tool and analyze its effect on metal cutting.	17.	Set the job in four jaws chuck, truing.	CO4
	18.	Set the cutting tool on tool post, at centre height.	CO4
LSO 4.4. Select suitable jigs and fixtures for welding parameters.	19.	Compare the surface finishing of a job during following operations one using jigs and fixtures and other any clamping device Welding, Milling, Grinding, boring.	CO4

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 4.5. Measure the cutting force of the given machine tool	20.	Measure cutting force of lathe	CO4
	21.	Measure cutting force of milling	CO4
LSO 5.1. Design and develop (model) different types of Jigs and fixtures in	22.	Design and develop simple plate type drill jig as per the given design	CO5
the workshop	23.	Design and develop milling fixtures as per the given design	CO5
	24.	Design and develop model of Blanking (simple) die set components as per the given design	CO5
	25.	Design and develop of Piercing (simple) die set components as per the given design	CO5
	26.	Design and develop model of Progressive (simple) die set components as per the given design	CO5
	27.	Design and develop model of compound dies components as per the given design	CO5
	28.	Design and develop model of simple 'V' bending die components as per the given design	CO5
	29.	Develop model of Drawing die set components as per the given design	
 LSO 5.2. Choose suitable material for punch die operation LSO 5.3. Choose suitable size to create a product. LSO 5.4. Produce washers in flexible sizes. 	30.	Design a set of punch and die for the development of different sizes of washers.	CO5
LSO 5.5. Design and develop different types of Jigs as per the given specifications	31.	Design and develop a channel jig for the given mild steel components to drill the hole of 18mm.running fit	CO5
	32.	Design and develop leaf jig for drilling two holes of 10 mm diameter on the given work piece.	CO5
	33.	Design and develop indexing jig for the flange coupling to drill 4 holes of diameter 10mm on its pitch circle diameter	CO5

- L) Suggested Term Work and Self Learning: S2425603C Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - Prepare a chart on safety precautions to be followed during working on press machine
 - Describe fly and power press on the basis of -its parts, function of each part, operating procedure of presses, mounting procedure of die set on press machine, alignment technique between punch and die assembly.

- b. Micro Projects:
 - Measure press capacity of any press available in workshop/nearby industry.
 - Download 5 videos on Press tools operations of different components, watch them and write a report to detail out the steps & material used.
 - Make two job components using different material by Die & Punch and compare their strength, surface roughness, weight, cost.
 - Collect specifications of different jigs and fixtures available in nearby market.
 - Sketch different jigs /fixtures/clamps/locating devices available in your institute workshop.
 - Design simple jigs /fixtures/clamps/locating devices for simple jobs.

c. Other Activities:

- 1. Seminar Topics:
 - Commercially available press tools, jigs and fixtures.
 - Recent development in press tool working industry.
 - Quality of product by using different jigs and fixtures in different machining operations.
- 2. Visits: Visit nearby tool room/industry with press tools operation facilities. Prepare report of visit with special comments of press tools operations used, material used, single component/batch production/mass production and cost of component.
- 3. Self-Learning Topics:
 - Undertake a market survey of local dealers for different jigs and fixtures available and prepare a report.
 - Visit to any industry and prepare a report consisting of types of press tools, dies operations, jigs and fixtures.
 - Prepare a list of books available in your library on press tools, jigs and fixtures.
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

		Course Evaluation Matrix						
	Theory Asses	sment (TA)**	Term We	Term Work Assessment (TWA)			ment (LA) [#]	
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Work & Self Learning Assessment			Progressive Lab Assessment	End Laboratory Assessment	
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)	
	Sem Test			Projects	Activities*			
CO-1	15%	15%	20%	20%	20%	20%	20%	
CO-2	20%	20%	20%	20%	20%	20%	20%	
CO-3	20%	20%	20%	20%	20%	20%	20%	
CO-4	20%	20%	20%	20%	20%	20%	20%	
CO-5	25%	25%	20%	20%	20%	20%	20%	
Total	30	70	20	20	10	20	30	
Marks				50				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom	COs Number(s)	Marks	Remember	Understanding	Application & above
	Instruction (Cl) Hours	Number(s)		(R)	(U)	(A)
Unit-1.0 Press tools	8	CO1	10	4	3	3
Unit-2.0 Press Working	10	CO2	15	4	5	6
Unit-3.0 Jigs and fixtures	10	CO3	15	4	5	6
Unit-4.0 Jig Boring	9	CO4	10	4	3	3
Unit-5.0 Design of Press tool, jigs and fixtures	11	CO5	20	4	6	10
Total	48	-	70	20	22	28

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant	PLA/ELA		
S.	Laboratory Practical Titles	COs	Performance		Viva-
No.		Number(s)	PRA* (%)	PDA** (%)	Voce (%)
1.	Analyze the effect of different press tools process parameters on the different materials such as material required, power required, time, surface finish, etc.	CO1	50	40	10
2.	Remount different types of die and punch set already available in your workshop.	CO1	50	40	10
3.	Dismantle the components of the given press tools as per assembly drawing.	CO1	50	40	10
4.	Assemble the components of the given press tools as per assembly drawing.	CO1	50	40	10
5.	 Develop following job using suitable press tool operation. Washer ring. 	CO2	50	40	10
6.	Download three models of job available on web and then develop them by using suitable die and punch operation.	CO2	50	40	10
7.	Perform bending operation on two different material sheets and compare power requirement, time, surface finish etc.	CO2	50	40	10
8.	Carry out load test on the given jigs & Fixtures.	CO3	50	40	10

		Relevant		PLA/ELA	
S.	Laboratory Practical Titles	COs	Perform		Viva-
No.		Number(s)	PRA*	PDA**	Voce
		itumber(3)	(%)	(%)	(%)
9.	Conduct the trial tests of fixture to ensure conformance to the standards	CO3	50	40	10
10.	Measure the dimension of jigs and Fixture using measuring instrument like CMM or laser tracker	CO3	50	40	10
11.	Identify different jigs and fixtures available in workshop.	CO3	50	40	10
12.	Perform embossing operation on a suitable size of material available in your workshop.	CO3	50	40	10
13.	Prepare a list of different press tools operations available in your workshop and estimate the cost for developing a simple component by each operation.	CO3	50	40	10
14.	Identify and list different components of the given types of press and machines.	CO4	50	40	10
15.	Identify and list different components of jig boring machines.	CO4	50	40	10
16.	Identify tools & equipment's as per desired specifications for drilling and tapping.	CO4	50	40	10
17.	Set the job in four jaws chuck, truing.	CO4	50	40	10
18.	Set the cutting tool on tool post, at centre height.	CO4	50	40	10
19.	Compare the surface finishing of a job during following operations one using jigs and fixtures and other any clamping device. Welding , Milling, Grinding, boring.	CO4	50	40	10
20.	Measure cutting force of lathe	CO4	50	40	10
21.	Measure cutting force of milling	CO4	50	40	10
22.	Design and develop simple plate type drill jig as per the given design	CO5	50	40	10
23.	Design and develop milling fixtures as per the given design	CO5	50	40	10
24.	Design and develop model of Blanking (simple) die set components as per the given design	CO5	50	40	10
25.	Design and develop of Piercing (simple) die set components as per the given design	CO5	50	40	10
26.	Design and develop model of Progressive (simple) die set components as per the given design	CO5	50	40	10
27.	Design and develop model of compound dies components as per the given design	CO5	50	40	10
28.	Design and develop model of simple 'V' bending die components as per the given design	CO5	50	40	10
29.	Develop model of Drawing die set components as per the given design	CO5	50	40	10
30.	Design a set of punch and die for the development of different sizes of washers.	CO5	50	40	10

		Delevent	PLA/ELA			
S.	Laboratory Drastical Titles	Relevant COs	Performance		Viva-	
No.	Laboratory Practical Titles	Number(s)	PRA* (%)	PDA** (%)	Voce (%)	
31.	Design and develop a channel jig for the given mild steel components to drill the hole of 18mm.running fit	CO5	50	40	10	
32.	Design and develop leaf jig for drilling two holes of 10 mm diameter on the given work piece.	CO5	50	40	10	
33.	Design and develop indexing jig for the flange coupling to drill 4 holes of diameter 10mm on its pitch circle diameter	CO5	50	40	10	

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

- **Note:** This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.
- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S.	Name of Equipment,	Broad	Relevant
No.	Tools and Software	Specifications	Experiment/Practical Number
1.	Different press tools	Press tools for cutting, bending, lancing drawing notching etc.,	1 to 7
2.	Die and punches	Embossing, coining etc.	2, to 7
3.	Different types of jigs.	Template jig, plate jig, channel jig, leaf jig, ring jig etc.	8-13
4.	Different types of fixtures	Turning fixture, milling fixtures boring fixture, welding fixture, etc.	7,9
5.	Different clamping & holding devices	Vices of different specifications and different clamping devices	All
6.	Measuring tools and machines	Scale, calipers, micrometers, welding machine, milling machine, lathe machine, boring machine etc.	All
7.	Post processing equipment and tools	Deburring tools (tool handle & deburring blades), Electronic Digital Caliper, Cleaning Needles, files of different specifications, long nose pliers, Flash cutters, Wire brush, Needle file, Wire stripper etc.	All

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
1.	Press tool design and construction	P.H. Joshi	S. Chand Publisher, Delhi, 4 July 2017 ISBN: 978-8121929387
2.	Elements of workshop technology vol-ii	S.K. Hajra Choudhary	Media Promotors & Publishers
		Nirjhar Roy	Pvt.Ltd. 1 Jan. 2010
			ISBN: 978-8185099156
3.	Jigs And Fixtures	P.H. Joshi	Mc Graw Hill Education.Noida,3 rd
			edition, 1 July 2017
			ISBN: 978-0070680739
4.	Design Of Jigs, Fixtures and Press Tools	V.Balachandran	Notion Press; 1st Edition, 22 April
			2015, ISBN: 978-9352060306
5.	Jigs And Fixtures: Non-Standard Clamping	Hiram E . Grant	Mc Graw Hill Education, Noida
	Devices.		16 July 1971, ISBN: 978-0070993297.

(b) Online Educational Resources:

- 1. https://youtu.be/uOYIoX3srbw
- 2. https://youtu.be/gTm9VCmbeDs
- 3. https://youtu.be/rKSqZiMjggk
- 4. https://youtu.be/ZFHxxp19eyQ
- 5. https://youtu.be/dX_vyQb3w1M
- 6. https://youtu.be/_Np461igdGk
- 7. https://youtu.be/LKEG3p3yx1g
- 8. https://youtu.be/74DggoOx34c
- 9. https://youtu.be/HVbbSl5WreA
- 10. https://youtu.be/NVTEKYFMHLU
- 11. https://youtu.be/C_vqMerH-oQ
- 12. https://youtu.be/jEkVDmg7Eww
- 13. https://youtu.be/B4ssW2bsp3w
- 14. https://youtu.be/Utp-pghGCkg
- 15. https://youtu.be/L1WpszXOFaM
- 16. https://youtu.be/6sz8f3zUilQ
- 17. https://amzn.eu/d/01DIJUo
- 18. https://innovatorproject.in/analysis-composite/press-tool-based-analysis-projects/

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Punches, Dies And Tools For Manufacturing In Presses By Joseph V.Woodworth; Illustrated In Forgotten Books 10 Nov 2022, Isbn:9780282082154.
- 2. Die design fundamentals ,3rd edition: Vukota boljanovic and J.R. Paquin
- 3. Press tools Users' Guide
- 4. Jigs and fixtures Handbook
- 5. Lab Manuals

Diploma in Mechanical Engineering		Semester -VI	SBTE, Bihar	
A)	Course Code	: 2425603D(T2425603D/P2425603D/S2425603D)		
B)	Course Title	: Hydraulic & Pneumatic Controls		
C)	Pre- requisite Course(s)	:		
D)	Rationale	·		

Rationale U)

Hydraulic and pneumatic operated machines and equipment are widely used in various mechanical and process industries due to its versatility and adaptability to automation. Engineering workforce in such industries are required to maintain hydraulic and pneumatic systems in different segments of industries. This competency needs the knowledge and basic skills related with construction and working of different components of such systems. This course will give the students, the basic skills and knowledge to use and maintain different types of hydraulic systems and pneumatic systems.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- CO-1 Analyze the various parameters of pneumatic and hydraulic systems
- CO-2 Select pump and actuators for the given system.
- CO-3 Select relevant control valves and sensors for the given system
- CO-4 Select relevant compressor, components and accessories for the given system
- CO-5 Design hydraulic and pneumatic circuits for the given application.
- CO-6 Design electro - pneumatic and electro- hydraulic circuits for the given application.

Suggested Course Articulation Matrix (CAM): **Programme Outcomes Programme Specific** (POs) Outcomes* Course PO-2 PO-4 Outcom PO-1 PO-5 PO-6 PO-7 PO-3 PSO-1 Basic and Problem Engineering Engineering Project Life Long es(COs) Design/ Discipline Analysis Tools Practices for Management Learning Development Specific Society, **d**Solutions Knowledge Sustainability and Environment CO-1 2 2 2 3 2 1 CO-2 2 3 2 1 2 1 -CO-3 2 3 2 1 2 1 CO-4 2 3 2 1 2 1 2 CO-5 3 2 2 2 1 -2 CO-6 3 2 2 2 _ 1 Legend: High (3), Medium (2), Low (1) and No mapping (-)

(PSOs)

PSO-2

F)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course		Scheme of Study (Hours/Week)						
Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	т						
2425603D	Hydraulic and Pneumatic Controls	03	-	04	02	09	06		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

				Assessme	nt Scheme	(Marks)			
		Theory Assessment (TA)		Term Work & Self- Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)	
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+T	
2425603D	Hydraulic and Pneumatic Controls	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

Semester -VI

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2425603D

Major Theory Session Outcomes (TSOs)		Units	Relevant COs	
			Number(s)	
TSO 1b.	Describe various laws governing fluid flow. Differentiate between aerostatic, hydrostatic, and hydrodynamic support	Unit-1.0 Introduction to Hydraulic and Pneumatic Systems	CO1	
1SO 1c.	Describe the cause of pressure drop and its effect	1.1 Fluid power- history, concept and Definition, Fluid transport systems, Fluid power		
TSO 1d.	Explain the properties of the given hydraulic oil.	systems, merits and limitations 1.2 Classification of Fluid Power Systems- Based on		
TSO 1e.	Select the hydraulic fluid for the given application based on the given criteria	the control system and its type 1.3 Concept of Hydrostatic and hydrodynamic		
TSO 1f.	Describe the factors affecting hydraulic oil contamination	1.4 Laws governing fluid flow- Pascal's law, Continuity equation, Bernoulli's theorem		
TSO 1g.	Draw ISO symbols for the given hydraulic and pneumatic components	1.5 Flow through pipes-types, pressure drop in pipes.		
TSO 1h.	Explain the safety procedure for the given industrial hydraulics and pneumatics systems.	 Hydraulic fluid - types ISO and SAE grades of oil and designations, properties, oil contamination and their advantages and 		
TSO 1i.	Identify the Hazards in using given hydraulic and pneumatic systems	limitations. 1.7 General layout and ISO Symbols of hydraulic		
TSO 1j.	Describe the guiding rules for designing the given hydraulic and pneumatic system.	and pneumatic systems 1.8 Hazard and safety in industrial hydraulics and		
TSO 1k.	Calculate the parameters of pneumatic and hydraulic systems	pneumatics.		
TSO 2a.	Compare given two types of pumps on the basis of the given criteria.	Unit-2.0 Pumps and Actuators	CO2	
TSO 2b.	Select relevant pump for the given application with justification.	2.1 Classification of pumps.2.2 Construction and working of gear, vane, screw,		
	Compare the given actuators with respect to identified criteria.	lobe and piston pumps (axial and radial) 2.3 Performance characteristics, specifications and		
	Assess the different factors that impact on actuator choice for a given application	selection criteria of pumps.2.4 Classification of hydraulic and pneumatic		
	Describe with sketches the construction and working of the given actuators.	actuators. 2.5 Construction and working of linear actuators –		
TSO 2f.	Select the relevant actuators for the given application with justification.	single acting and double acting cylinders, Cylinder –cushioning, stop tube		
TSO 2g.	Identify the faults in the given pump and suggest the remedies	2.6 Construction and working of rotary actuators (rotary Motors) Gear motors, Vane motors,		
TSO 2h.	Explain routine maintenance procedure of the pump and actuator	Axial - in-line - swash plate piston motors 2.7 Specifications and selection criteria of		
TSO 2i. TSO 2j.	Troubleshoot the given hydraulic system Calculate pump efficiency and Brake Horse Power (BHP) of the pump	actuators 2.8 Maintenance procedure for pumps and actuators		
TSO.3a	Classify the given types of control valves	Unit-3.0 Control Valves and Sensors	CO3	
	with respect to identified criteria.			

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant
	, ,		COs
			Number(s)
TSO.3b TSO.3c TSO.3d	and working of the given valves. Describe the actuation method of the given valves for the given application.	 3.1 Classification of control valves 3.2 Construction and working of pressure control valves-relief, unloading, sequence, counter balance, pressure reducing valves. Direction control valves- check valves, 2/2, 3/2, 4/2, 4/3, 5/2, 5/3 D.C. Valves used in hydraulics and pneumatics. servo valves and Flow control valves – Non-compensated, Pressure and temperature compensated. 3.3 Standard centre positions, methods of actuation, Types of valve element 3.4 Hydraulic and pneumatic sensors - Introduction, Unique features 	
		 3.5 Types-Pressure and temperature monitoring sensors, hydraulic flow rate sensor, level sensor, Pneumatic Proximity Sensors, Back Pressure Sensor (Pilot tube), Reflex Sensor (Screen Nozzle) Air Barrier Sensor, 	
TSO 4a.	Describe the function and working of the given compressor	Unit-4.0 Compressor, Components and Accessories	CO4
	Select the relevant compressor for the given application with justification.	4.1 Pneumatic Control System-Introduction, Air Preparation-Primary and Secondary Air	
	Select the relevant accessories for the given type of hydraulic /pneumatic system with justification.	Treatment 4.2 Pneumatic Power Source- Compressor, Classification, Air Receiver and Control	
TSO 4e.	Select appropriate hydraulic and pneumatic pipe for given application Use and maintain FRL unit in pneumatics Select hydraulic and pneumatic accessories with its location on hydraulic and pneumatic system.	Methods 4.3 Compressors-Types, construction, working principle of Reciprocating Type Air Compressor-Single and Multi-stage Piston Pump, Rotary compressors, PV Diagram and Work Done	
	Calculate mechanical efficiency, volumetric efficiency and isothermal efficiency of the compressor.	 4.4 Construction, working principle of FRL unit, Dual (twin) pressure valve, shuttle valve, Quick exhaust valve, Time delay valve. 4.5 Accessories: Oil reservoir, pipes, hoses, fittings, oil filters, air filters, seals and gaskets, intensifiers, accumulators, heat exchanger, muffler, Air Dryer 4.6 Hydraulic pipes and pneumatics pipes -Types, standards, designation methods and specifications, pressure ratings, applications and selection criteria 	
	Interpret given hydraulic and pneumatic circuit drawings.	Unit-5.0 Hydraulic and Pneumatic Circuits	CO5
	Explain with sketches the working of the given hydraulic and pneumatic circuit.	5.1 Working and applications of basic Hydraulic Circuits, types - intensifier, regenerative,	
	Select the relevant components required to develop the given hydraulic and pneumatic circuit with justification.	 synchronizing, sequencing, speed components 5.2 Design hydraulic circuits -single and double acting hydraulic cylinders, motors, circuit for speed control Mater in Mater out Plead Off 	
	Analyze the given hydraulic and pneumatic circuits Select relevant components for the given	speed control Meter-in, Meter-out, Bleed Offcircuit5.3 Design hydraulic circuit for Regenerative,	
TSO 5f.	hydraulic and pneumatic application	synchronizing counterbalance, Sequencing circuits, two pumps unloading	

Ma	ijor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 5i. TSO 5j.	Describe the procedure for maintaining basic hydraulic circuit pneumatic circuits based on given system requirements. Identify the faults in the given hydraulic system and pneumatic system and remedial measures Troubleshoot the given hydraulic and pneumatic system Use hydraulic software and pneumatic software to develop circuits Simulate different components hydraulic and pneumatic systems	 5.4 Design hydraulic circuits for Milling, Grinding and Shaper machine Pneumatic circuits 5.5 Circuit diagram, components, working and applications. Analysis of Multiple Actuators 5.6 Design pneumatic circuit by classic, cascade, step counter, karnaugh and combinational circuit design 5.7 Design pneumatic circuits for- direct /indirect control of single and double acting air cylinders, motors, two step feed control, automatic cylinder reciprocation, time delay, sequencing circuits, Logic AND/OR circuits 5.8 Design pneumatic circuits for Speed control of cylinders and motors. 5.9 Analysis of Hydraulic and Pneumatic Circuits 5.10 Use of simulation software for hydraulic and pneumatic circuits 5.11 Selection of relevant components, fault detection, Remedies and Maintenance of hydraulic and pneumatic systems. 	
		Unit-6.0 Electro Pneumatic System and Electro	CO6
TSO 6b. TSO 6c. TSO 6d. TSO 6e. TSO 6f. TSO 6g.	Differentiate between Pneumatic servo system, Hydro-Pneumatics, Electro- Pneumatics, Electro-hydraulic systems Interpret given, Electro-hydraulic and Electro pneumatic circuit drawings. Describe the given Electro- pneumatic controls Select the relevant components required to develop the given Electro -hydraulic and electro-pneumatic circuit with justification. Analyze the given Electro-hydraulic and Electro pneumatic circuit Select relevant components for the given Electro-hydraulic and Electro pneumatic application Design Electro-hydraulic and Electro pneumatic circuit for the given application Use electro-hydraulic and electro- pneumatic software to simulate different Electro-hydraulic and Electro pneumatic systems	 Hydraulic Systems 6.1 Introduction to Pneumatic servo system, Hydro-Pneumatics, Electro-Pneumatics, Electro-hydraulic 6.2 Applications, Advantages and Disadvantages of above systems. 6.3 Electro -pneumatic controls, operation of electric actuated valves, Pneumatic electrical transducers, Electric converters, signal processors. Relays and protection relays. Connections of direct and indirect management. 6.4 Logic circuits- Time Tracking Control, Checking workflows, Proportional pneumatics, Proportional switching 6.5 Electrohydraulic control, electro Hydraulic cylinders, Control of pneumatic and hydraulic processes using a PLC controller 6.6 Design of basic electro-pneumatic and electrohydraulic circuits. 6.7 Application of hydraulic and Electro Hydraulic System - working principle, major elements of - Automotive hydraulic brake and power steering, Industrial Fork lift, Hydraulic jack, Hydraulic press, Rotary machining station 6.8 Application of pneumatic and Electro pneumatic System- working principle, major elements of -Allocating device, sorting device, edge folding device, Foil welding, Feed rail 	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2425603D

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1. Identify components and draw ISO symbols of the components used in	1.	Identify the components in the given hydraulic and pneumatic systems.	CO1
hydraulic and Pneumatics system	2.	Identify and draw ISO symbols used in given hydraulic and Pneumatics components	CO1
LSO 1.2. Use Hydrostatics and properties of fluids apparatus	3.	Determine the effect of temperature and pressure on hydraulic oil performance	CO1
	4.	Determine the properties of the given hydraulic fluid	CO1
LSO 1.3. Use Bernoulli test rig	5.	Investigate the validity of the Bernoulli equation when it is applied to a steady flow of water through a tapered duct.	CO1
LSO 1.4. Use Flow losses in pipe apparatus	6.	Determine the Co-efficient of friction of flow through pipes of various sizes	CO1
	7.	Determine minor losses in flow through pipes	CO1
LSO 2.1. Use hydraulic bench / Centrifugal pump test rig	8.	Determine the various efficiencies of the given pump	CO2
	9.	Determine the efficiency of a given centrifugal pump and plot the following graphs. (i) I/P vs Discharge (ii) Total head vs Discharge (iii) Efficiency vs Discharge.	
	10.	Determine the operational characteristics of two centrifugal pumps when they are configured as a single pump, two pumps in series, and two pumps in parallel.	CO2
	11.		CO2
	12.	Determine the various performance of the multi stage centrifugal pump for constant & variable speed.	CO2
	13.	Determine the various performance of the reciprocating pump for (1) Variable speed and constant head (2) Constant speed and variable head	CO2
	14.	Determine the efficiency of a given gear pump and plot the following graphs i) Percentage efficiency vs head ii) Percentage slip vs head iii) Discharge vs head iv) Output vs head	CO2
LSO 2.2. Use DC servo motor	15.		CO2
LSO 2.3. Use AC servo motor	16.	Determine speed torque characteristics of AC servo motor.	CO2
LSO 2.4. Use stepper motor	17.	Program the motor to operate in CCW and CW direction with user control speed	CO2
	18.	Identify of stepper motor terminals and control in wave step mode	CO2

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 2.5. Use hydraulic and pneumatic trainer	19.	Design circuit to actuate double acting cylinder using pneumatic direction control valve	CO2
	20.	Control the direction and speed of cylinders.	CO2
LSO 3.1. Use Control Valve Characteristics Trainer	21.	Determine the flow coefficient Cv of the linear control valve	CO3
	22.	Determine the flow coefficient Cv of the quick open control valve	CO3
	23.	Calculate rangeability of linear control valve	CO3
	24.	Calculate rangeability of quick open control valve.	CO3
LSO 3.2. Use hydraulic and pneumatic trainer	25.	Design a circuit using direction control valve and pressure control valve for clamping device for jigs and fixture	CO3
LSO 3.3. Use Pressure Process Control Training System	26.	Determine the performance of ON- OFF/P/PI/PD/PID controllers on pressure process.	CO3
LSO 3.4. Use Level Control Trainer.	27.	Determine the performance of ON – OFF/P/PI/PD/PID controllers on level process	CO3
LSO 3.5. Use Flow Control Trainer	28.	Determine the performance of ON – OFF/P/PI/PD/PID controllers on flow process	CO3
LSO 3.6. Use temperature Control Trainer.	29.	Determine the performance of ON- OFF/P/PI/PD/PID controllers on temperature process.	CO3
LSO 4.1. Use compressor test rig	30.	Determine Performance of a two stage Reciprocating Air Compressor	CO4
	31.	Determine performance of a two-stage single acting reciprocating air compressor.	CO4
	32.	Determine volumetric efficiency and isothermal efficiency of two stage single acting reciprocating air compressor	CO4
	33.	Determine various performance of the given compressor	CO4
LSO 4.2. Use hydraulic ram test rig	34.	 Determine the working characteristics of hydraulic ram at constant valve lift and constant supply head and plot the following curves. Pumped water v/s Delivery head waste water v/s Delivery head D' aubussion efficiency v/s Delivery head Rankines's efficiency v/s Delivery head Number of heats/sec v/s Delivery head 	CO4
LSO 5.1. Use hydraulic trainer with simulation software	35.	Design, assemble and operate hydraulic circuit to actuate and control SAC and DAC	CO5
	36.	Design, assemble and operate Meter-in, Meter out hydraulic circuit.	CO5
	37.	Design, assemble and operate any suitable sequencing hydraulic circuit	CO5
	38.	Design the hydraulic system circuit based on given input and parameters using hydraulic simulation software.	CO5

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
	39.	Design, assemble and operate Regenerative Circuit	CO5
	40.	Design, assemble and operate hydraulic circuit using accumulator	CO5
	41.	Develop Automatic cylinder reciprocation circuit using hydraulic trainer.	CO5
LSO 5.2. Use pneumatic trainer with simulation software	42.	Design, assemble and operate Pneumatic circuits to actuate and control SAC, DAC, Air motor	CO5
	43.	Design, assemble and operate Pneumatic circuits for controlling speed	CO5
	44.	Design, assemble and operate indirect/pilot control Pneumatic circuit	CO5
	45.	Develop any suitable sequencing Pneumatic circuit.	CO5
	46.	Design, assemble and operate Pneumatic circuits for Logic functions (AND/OR/Time delay)	CO5
	47.	Develop Automatic cylinder reciprocation circuit using pneumatic trainer	CO5
LSO 6.1. Use electro pneumatic trainer	48.	Design, assemble and operate Electro Pneumatic circuits to actuate and control SAC, DAC, Air motor	CO6
	49.	Design, assemble and operate Electro Pneumatic circuits for the given application	CO6
LSO 6.2. Use electro hydraulic trainer	50.	Design, assemble and operate Electro Hydraulic circuits to actuate and control SAC, DAC, Air motor	CO6
	51.	Design, assemble and operate Electro Hydraulic circuits for the given application	CO6

- L) Suggested Term Work and Self Learning: S2425603D Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - Produce a presentation analyzing fluid viscosity using Stokes' Law and validate how this relates to Navier–Stokes equations
 - Stating any assumptions, compare the applications of practical hydraulic and pneumatic systems
 - Prepare report of agriculture equipment's working on hydraulics and pneumatics.
 - Prepare report on working of hydraulic jack and its system.
 - Analyze the methods in fluid power principles and working of hydraulic pumps

b. Micro Projects:

- Prepare working model of hydraulic crane using waste injections used by doctors.
- Develop working model of automation of bench vice used in carpentry/fitting shop.
- Market survey of oil used in hydraulic system (Manufacturers, specification, trade names, cost, packing size)
- Design of hydraulic / pneumatic system and related components for any industrial application

c. Other Activities:

- 1. Seminar Topics:
 - Hazard and safety in industrial hydraulic and pneumatic.
 - Remedies and faults detection in pneumatic and hydraulic circuits.
 - Prototype working model of hydraulically operated hospital bed.
 - Types of oil filters.
- 2. Visits: Visit nearby tool room/industry with hydraulic and pneumatic operated machines. Prepare report of visit with special comments of hydraulic and pneumatic operated machine used, material used, single component/batch production/mass production and cost of machine used.
- 3. Self-Learning Topics:
 - Prepare journal based on practical performed in Industrial fluid power laboratory. Journal consist of drawing, observations, required measuring tools, equipment's etc.
 - Prepare visit report of any automobile service station to observe use of pneumatic hand tools.
 - Hydraulic operated crane operation.
 - Visit nearby industry and learn to operate pneumatic machine.
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix									
Theory Assessment (TA)** Term Work Asse				rk Assessm	ent (TWA)	Lab Assessment (LA) [#]				
Progressive End Theory Theory Assessment Assessment (ETA) COs (PTA)			0	Progressive Lab Assessment	End Laboratory Assessment					
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)			
	Sem Test			Projects	Activities*					
CO-1	15%	15%	15%	20%	-	20%	15%			
CO-2	15%	15%	15%	20%	-	10%	15%			
CO-3	15%	15%	15%	20%	33%	15%	20%			
CO-4	20%	20%	20%	20%	33%	20%	20%			
CO-5	20%	20%	20%	20%	34%	20%	15%			
CO-6	15%	15%	15%	20%		15%	15%			
Total	30	70	20	20	10	20	30			
Marks				50						

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

The percentage given are approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)		
	Classroom Instruction	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above	
	(CI) Hours					(A)	
Unit-1.0 Introduction to Hydraulic and Pneumatic Systems	8	CO1	10	3	3	4	
Unit-2.0 Pumps and Actuators	8	CO2	10	3	2	5	
Unit-3.0 Control Valves and Sensors	8	CO3	10	3	2	5	
Unit-4.0 Compressor, Components and Accessories	8	CO4	15	5	5	5	
Unit-5.0 Hydraulic and Pneumatic Circuits	8	CO5	15	5	4	6	
Unit-6.0 Electro Pneumatic System and Electro Hydraulic Systems	8	CO6	10	3	3	4	
	48	-	70	20	26	24	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Delevent	PLA/ELA			
S. No.	Loboratory Experiment/Drestical Titles	Relevant COs	Performance		Viva-	
5. NO.	Laboratory Experiment/Practical Titles	Number(s)	PRA*	PDA**	Voce	
		Number(s)	(%)	(%)	(%)	
1.	Identify the components in the given hydraulic and pneumatic systems	CO1	40	50	10	
2.	Identify and draw ISO symbols used in given hydraulic and Pneumatics components	CO1	40	50	10	
3.	Determine the effect of temperature and pressure on hydraulic oil performance	CO1	40	50	10	
4.	Determine the properties of the given hydraulic fluid	CO1	40	50	10	
5.	Investigate the validity of the Bernoulli equation when it is applied to a steady flow of water through a tapered duct.	CO1	40	50	10	
6.	Determine the Co-efficient of friction of flow through pipes of various sizes	C01	40	50	10	
7.	Determine minor losses in flow through pipes	CO1	40	50	10	
8.	Determine the various efficiencies of the given pump	CO2	40	50	10	
9.	Determine the efficiency of a given centrifugal pump and plot the following graphs. (i) I/P vs Discharge (ii) Total head vs Discharge (iii) Efficiency vs Discharge.	CO2	40	50	10	
10.	Determine the operational characteristics of two centrifugal pumps when they are configured as a single pump, two pumps in series, and two pumps in parallel.	CO2	40	50	10	
11.	Determine the various performance of the single stage centrifugal pump for constant & variable speed.	CO2	40	50	10	

		Delevent	PLA/ELA			
C No	Loboratory Everytiment/Drestical Titles	Relevant COs	Performance		Viva-	
S. No.	Laboratory Experiment/Practical Titles		PRA*	PDA**	Voce	
		Number(s)	(%)	(%)	(%)	
12.	Determine the various performance of the multi stage centrifugal pump for constant & variable speed.	CO2	40	50	10	
13.	Determine the various performance of the reciprocating pump for (1) Variable speed and constant head	CO2	40	50	10	
14	(2) Constant speed and variable head		40	50	10	
14.	Determine the efficiency of a given gear pump and plot the following graphs i) Percentage efficiency vs head ii) Percentage slip vs head iii) Discharge vs head iv) Output vs head		40	50	10	
15.	Determine speed-torque characteristic of D.C servomotor.	CO2	40	50	10	
16.	Determine speed torque characteristics of AC servo motor.	CO2	40	50	10	
17.	Program the motor to operate in CCW and CW direction with user control speed	CO2	40	50	10	
18.	Identify of stepper motor terminals and control in wave step mode	CO2	40	50	10	
19.	Design circuit to actuate double acting cylinder using pneumatic direction control valve	CO2	40	50	10	
20.	Control the direction and speed of cylinders.	CO2	40	50	10	
21.	Determine the flow coefficient Cv of the linear control valve	CO3	40	50	10	
22.	Determine the flow coefficient Cv of the quick open control valve	CO3	40	50	10	
23.	Calculate rangeability of linear control valve	CO3	40	50	10	
24.	Calculate rangeability of quick open control valve.	CO3	40	50	10	
25.	Design a circuit using direction control valve and pressure control valve for clamping device for jigs and fixture	CO3	40	50	10	
26.	Determine the performance of ON-OFF/P/PI/PD/PID controllers on pressure process.	CO3	40	50	10	
27.	Determine the performance of ON –OFF/P/PI/PD/PID controllers on level process	CO3	40	50	10	
28.	Determine the performance of ON –OFF/P/PI/PD/PID controllers on flow process	CO3	40	50	10	
29.	Determine the performance of ON-OFF/P/PI/PD/PID controllers on temperature process.	CO3	40	50	10	
30.	Determine Performance of a two stage Reciprocating Air Compressor	CO4	40	50	10	
31.	Determine performance of a two-stage single acting reciprocating air compressor.	CO4	40	50	10	
32.	Determine volumetric efficiency and isothermal efficiency of two stage single acting reciprocating air compressor	CO4	40	50	10	

		Relevant			
S. No.	Laboratory Experiment/Practical Titles	COs	Perfor	Viva-	
5. NO.			PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
33.	Determine various performance of the given compressor	CO4	40	50	10
34.	 Determine the working characteristics of hydraulic ram at constant valve lift and constant supply head and plot the following curves. Pumped water v/s Delivery head waste water v/s Delivery head D' aubussion efficiency v/s Delivery head Rankines's efficiency v/s Delivery head Number of heats/sec v/s Delivery head 	CO4	40	50	10
35.	Design, assemble and operate hydraulic circuit to actuate and control SAC and DAC	CO5	40	50	10
36.	Design, assemble and operate Meter-in, Meter out hydraulic circuit.	CO5	40	50	10
37.	Design, assemble and operate any suitable sequencing hydraulic circuit	CO5	40	50	10
38.	Design the hydraulic system circuit based on given input and parameters using hydraulic simulation software.	CO5	40	50	10
39.	Design, assemble and operate Regenerative Circuit	CO5	40	50	10
40.	Design, assemble and operate hydraulic circuit using accumulator	CO5	40	50	10
41.	Develop Automatic cylinder reciprocation circuit using hydraulic trainer	CO5	40	50	10
42.	Design, assemble and operate Pneumatic circuits to actuate and control SAC, DAC, Air motor	CO5	40	50	10
43.	Design, assemble and operate Pneumatic circuits for controlling speed	CO5	40	50	10
44.	Design, assemble and operate indirect/pilot control Pneumatic circuit	CO5	40	50	10
45.	Develop any suitable sequencing Pneumatic circuit.	CO5	40	50	10
46.	Design, assemble and operate Pneumatic circuits for Logic functions (AND/OR/Time delay)	CO5	40	50	10
47.	Develop Automatic cylinder reciprocation circuit using pneumatic trainer	CO5	40	50	10
48.	Design, assemble and operate Electro Pneumatic circuits to actuate and control SAC, DAC, Air motor	CO6	40	50	10
49.	Design, assemble and operate Electro Pneumatic circuits for the given application	CO6	40	50	10
50.	Design, assemble and operate Electro Hydraulic circuits to actuate and control SAC, DAC, Air motor	CO6	40	50	10
51.	Design, assemble and operate Electro Hydraulic circuits for the given application	CO6	40	50	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools	Broad	Relevant	
	and Software	Specifications	Experiment/Practical	
			Number	
1.	Hydrostatics and properties of	Self-contained apparatus for many experiments in fluid	3,4	
	fluids apparatus	mechanics and properties of fluids, hydrostatic principles		
		and buoyancy / floatation and Archimedes' principle.		
2.	Bernoulli test rig	Take tank 2/3 full of water, floating vessel or pontoon	5	
		fitted with a pointed pointer moving on a graduated scale,		
		with weights adjusted on a horizontal beam		
3.	Flow losses in pipe apparatus	Flow losses in pipe apparatus with flow control device and	6,7	
		manometer, valve fitted with each pipe to Regulate the		
		flow, a measuring tank fitted with a piezometer tube and a		
		graduated scale, Stop watch, arrangement for uniform		
		supply of water, pipe fittings consisting of sudden enlargement, sudden contraction, elbow and bend,		
		measuring tank with a piezometer and a scale, manometer		
4.	Cut section of different types	Working/actual models of pumps, valves, cylinders,	8-14	
4.	of pump and working models	motors, accumulators, filters etc.	0-14	
	of pump	Cut section of pumps, valves, cylinders, motors,		
	or pamp	accumulators, filters etc.		
5.	Hydraulic bench / Centrifugal	fitted with a single centrifugal pump that is driven by a	8-14	
	pump test rig	single-phase A.C. motor, speed control unit, auxiliary		
		pump, Pressure gauges installed at the inlet and outlet of		
		the pumps, watt-meter unit, vacuum gauges, Flow		
		measuring unit		
6.	DC servo motor	DC servo motor	15	
7.	AC servo motor	AC servo motor	16	
8.	Stepper motor	Stepper motor	17-18	
0.			17-10	
9.	SAC and DAC cylinders	SAC and DAC cylinders actuators	19-20	
	actuators			
10.	Working models of different	Working models of different types of control valves.	21-24	
	types of control valves.			
11.	Control Valve Characteristics	Mounting of different types of control valves of different	21-24	
	Trainer	design		
12.	Pressure Process Control	Pressure Process Control Training System for laboratory	25-26	
12.	Training System		25-20	
		purpose		
13.	Computerized Level Control Trainer	Computerized Level Control Trainer for laboratory purpose	27	
14.	Computer Controlled Flow Control Trainer	Computer Controlled Flow Control Trainer	28	
15.	Temperature Process Control	Temperature Process Control trainer	29	
10.	trainer			

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
16.	Compressor test rig	Single/multistage reciprocating compressor (pressure 0-10 bar)	30-33
17.	Hydraulic ram test rig	hydraulic ram connects to the supply tank using supply pipes, pressure gauge to measure delivery pressure, arrangement for, measuring the waste water, arrangement for measuring the perfect water, stop watch, Graph	34
18.	Hydraulic trainer with simulation software	Hydraulic trainer with transparent/actual working components.	19,20, 25 35-41
19.	Pneumatic trainer with simulation software	Pneumatic trainer with transparent/actual working components.	19,20, 25, 42-47
20.	Electro pneumatic trainer with simulation software	Electro pneumatic trainer with transparent/actual working components	48-49
21.	Electro hydraulic trainer with simulation software	Electro hydraulic trainer with transparent/actual working components	50-51

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Design Concepts in Pneumatic Systems	Joji Parambath	Kindle Edition, 2023 ASIN : BOC7PMFKRL
2.	Work on hydraulic systems: components and applications of hydraulic	James Johnson	Kindle Edition, 2023 ASIN : B09V3M6TBL
3.	Fundamentals of Pneumatics and Hydraulics	Md. Abdus Salam	Springer Nature; 1st ed. 2022 ISBN-10 : 9811908540 ISBN-13 : 978-9811908545
4.	Elements of Hydrostatics Hydraulics and pneumatics (Hindi Paperback)	Navina Chandra Rai	Legare Street Press, Hindi Edition, 2022, ISBN-10: 1017960445 ISBN-13: 978-1017960440
5.	Design of Pneumatic Systems	Joji Parambath	Independently Published, 2020 ISBN-13: 979-8653408809 ASIN: B08BF7NYP1
6.	Hydraulic and Pneumatic Controls 3e	Srinivasan R.	Vijay Nicole Imprints, 2019 ISBN-10: 8182095786 ISBN-13: 978-8182095786
7.	A Textbook of Fluid Mechanics and Hydraulic Machines	Dr. R. K. Bansal	LAXMI PUBLICATION, 11 th ed. 2023 ISBN-10: 8131808157 ISBN-13: 978-8131808153
8.	Modular Approach to Designing Pneumatic- Hydraulic Wellhead Control System	Subrata Chatterjee	Book Rivers, 2023 ISBN-10: 9355158416 ISBN-13: 978-9355158413
9.	Pneumatic Systems-Principles and Maintenance	S. R. Majumdar	McGraw-Hill Education, 2017 ISBN:9780074602317
10.	Hydraulics and Pneumatics	Vinayak V. Gaikwad Dr. Vikas v. Shinde	Technical Publications, 2020 ISBN:9789333219112

(b) Online Educational Resources:

- 1) https://www.google.com/search?q=hydraulic+and+pneumatic+control&oq=hydraulic+and +pn eumatic+control&aqs=chrome.69i57j69i61l2j69i60.23552j0j4&sourceid=chrome
- 2) https://archive.nptel.ac.in/courses/112/106/112106300/
- 3) https://pc-coep.vlabs.ac.in/exp/direct-single-acting-cylinder/theory.html
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

Diploma in Mechanical Engineering		Semester- VI	SBTE, Bihar
A)	Course Code	: 2425603E(T2425603E/P2425603E/S2425603E)	
B)	Course Title	: Renewable and Alternate Energy Sources	
C)	Pre- requisite Course(s)	: Environmental Education and Sustainable Devel	opment
ח)	Rationale		

D) Rationale

In the context of rapidly depleting fossil fuel resources and increasing power demand along with environmental concern it is imperative to look for the alternative sources of energy. Non-conventional energy sources have become the most urgent sources for replacement of conventional energy sources because of rising costs, decreasing availability, and causing pollution to the environment. The future of Wind, Solar, Tidal and other alternate energy sources is bright and these will play an important role in the world energy scenario and future employments. This course aims at developing the ability in the students to cope up with the working and construction aspects of machinery, devices and components associated with these energy systems. Knowledge of new technologies will enrich the technical know-how of students and increase their employment opportunities in the upcoming sector of renewable energy.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Explore the role and prospects of non-conventional energy sources.
- **CO-2** Explain construction and working of Solar energy devices and components.
- **CO-3** Describe construction and working of Wind energy related systems and subsystems.
- **CO-4** Explain construction, working, maintenance of Biomass plants and energy from Waste.
- **CO-5** Describe construction and working of Geothermal, OTEC, Tidal systems and subsystems.
- **CO-6** Describe construction and working of Fuel cells and Hydrogen energy

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/Devel opment of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	-	-	-	3	-	1		
CO-2	3	-	1	2	3	-	1		
CO-3	3	-	1	2	3	-	1		
CO-4	3	-	1	2	3	-	1		
CO-5	3	-	-	2	3	-	1		
CO-6	3	-	1	-	3	-	1		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)						
Course Code	Course Title	Instru	room uction CI)	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L	Т					
2425603E	Renewable and Alternate Energy Sources	03	-	04	02	09	06	

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Assessment Scheme (Marks)							
a		Theory Assessment (TA)		Term Work & Self Learning Assessment (TWA)		Lab Assessm ent(LA)		(TA+TWA+LA)	
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment	End Laboratory Assessment (ELA)	Total Marks (T	
2425603E	Renewable and Alternate Energy Sources	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills,

Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2425603E

TSO 1b. TSO 1c.	Explain renewable and non-renewable energy sources. Compare renewable and non- renewable energy sources Explain primary and secondary energy sources. Explain Hybrid energy systems, Distributed	 Unit-1.0 Introduction to Energy Sources 1.1 Major sources of energy: Renewable and Non- renewable and comparison. 1.2 Primary and secondary energy sources. 1.3 Energy Scenario: - Prospects an Need of 	Number(s CO1
TSO 2a. TSO 2b. TSO 2c. TSO 2d. TSO 2e.	energy systems and dispersed generation (DG) Identify different issues, prospects and need of renewable and alternate energy sources. Explain Beam and diffuse radiation. Explain the given earth sun angle(s). Enumerate the uses of the given Solar energy collector. Describe the construction and working of the given Solar energy device(s). Explain the utility of low cost solar cooker as alternative cooking appliances in villages. Select photo-voltaic cells for domestic lightning in houses.	 renewable and alternate energy sources. 1.4 Hybrid energy systems, Distributed energy systems and dispersed generation (DG). 1.5 Prospects and Achievements of renewable energy sources in India in general and Bihar state in particular. 1.6 Issues related to power generation through renewable energy sources. Unit-2.0 Solar Energy 2.1 Solar radiation: Beam and diffuse radiation, Solar constant, Solar Radiations at earth's surface Solar Radiation Geometry: Declination, hour angle, altitude angle, incident angle, zenith angle, solar azimuth angle attenuation and measurement of Solar radiation, local Solar time, derived Solar angles. 2.2 Flat plate collectors, concentrating collectors, elements and working 2.3 Solar air heaters-types, Solar driers, elements and working. 2.4 Storage of Solar energy-thermal storage, Electrical storage, Chemical storage. 2.5 Solar water heaters, Solar distillation, Solar still, Solar cooker, elements and working. 2.6 Photovoltaic - Solar cells & its applications, 	CO2
TSO 3a. TSO 3b. TSO 3c. TSO 3d. TSO 3e. TSO 3f.	Describe the principle of conversion of wind energy. State advantages and limitations of wind energy. Determine wind power, power coefficient and maximum power. Select sites for the given wind mill. Explain construction and working of the given horizontal and vertical axis wind mills Compare horizontal and vertical wind	 lighting systems, Solar street lights, elements and working. (no derivations and numerical) Unit-3.0 Wind Energy 3.1 Basic Principle of wind energy conversion. 3.2 Power in wind, Available wind power formulation, Power coefficient, Maximum power 3.3 Main considerations in selecting a site for wind mills. 3.4 Advantages and limitations of wind energy conversion. 3.5 Classification of wind mills 3.6 Construction and working of horizontal and 	CO3

oma in Mechanical Engineering S		mester- VI	SBTE, Bihar
Major Theory Session Outcomes (TSOs)		Units	Relevant COs Number(s)
TSO 3g.	Use wind energy for power generation and pumping in the given situation.	3.7 Main applications of wind energy for power generation and pumping.	
TSO 4a.	Identify common species recommended	Unit-4.0 Energy from Biomass	CO4
TSO 4b.	for biomass. Describe the methods for obtaining energy	Energy from Biomass	
50 40.	from the given biomass.	4.1 Common species recommended for biomass.	
TSO 4c.	Classify biomass- gasified, fixed bed and	4.2 Methods for obtaining energy from biomass	
TSO 4d.	fluidized.	 4.3 Thermal classification of biomass a) Gasified, b) Fixed bed and fluidized 	
130 40.	Explain the constructional details of Bio gas conversion plant.	4.4 Comparison of Biomass with conventional fuels	
TSO 4e.	Explain the application of Gasifier.	4.5 Constructional details, site selection, filling a	
TSO 4f.	Explain the production and application of	digester for starting, maintaining Biogas	
TSO 4g.	biodiesel. Use agricultural waste as a biomass.	production, Fuel properties of Bio gas, and applications of Biogas.	
TSO 49.	Explain biomass digester.	4.6 Maintenance of Biogas plants.	
TSO 4i.	Compare biomass with conventional fuels.	4.7 Application of gasifier	
TSO 4j.	Describe the maintenance procedure of	4.8 Biodiesel production and application	
	Biogas plants and components.	4.9 Agriculture waste as a biomass	
TSO 4k.	Explain procedure to extract energy/fuel/gases from various waste like	4.10 Biomass digester	
	Tire, Rubber, Plastic, Mixed Solid	Energy from wastes:	
	Municipal waste.	4.11 Recycling of plastic and Tire/Rubber waste to	
rso 41.	Explore other alternate energy sources like	produce fuel.	
	flowing drain water, mass mobility of human and vehicles at Railway stations,	4.12 Recycling of Mixed Solid Municipal waste to produce energy/Synthetic gases.	
	Malls, Highways by modifying speed	4.13 Recycling of used Vegetable oil.	
	breakers, steps, stairs etc.	4.14 Energy from flowing drain water, Energy from	
		mass mobility of human and vehicles at	
		Railway stations, Malls, Highways by modifying speed breakers, steps, stairs etc.	
TSO 5a.	Identify environmental implications of		CO5
	geothermal energy		
TSO 5b.	Describe working of Geothermal plant.	5.1 Introduction, geothermal sources,	
TSO 5c.	Describe the given Ocean Thermal Electric	classification, compressed resources, exploration, environmental implications,	
	Conversion (OTEC) systems	applications, advantages and disadvantages.	
TSO 5d.	Explain construction and working of a tidal	5.2 Geothermal plant.	
	energy plant.	5.3 Ocean Thermal Electric Conversion (OTEC)	
		systems like open cycle, closed cycle.	
		5.4 Energy from tides, basic principle of tidal power, single basin and double basin tidal	
		power plants, advantages, limitation.	
	Classify the types of fuel cells.	Unit-6.0 Fuel Cells and Hydrogen Energy	CO6
	List applications of fuel cells.		
130 60.	State advantages and limitations of fuel cells.	6.1 Fuel Cells- Introduction, Classification :-proton	
TSO 6d.	Explain the working principleof the given	exchange membrane fuel cells (PEMFCs), solid oxide fuel cells (SOFCs), and alkaline fuel cells,	
	Fuel cell.	Principles, performance, application,	
TSO 6e.	Explain production, storage and	advantages and limitations.	
TSO EF	transportation of hydrogen energy.	6.2 Hydrogen Energy - Introduction, production,	
130 OJ.	Explain the safety measures in hydrogen energy utilization.	storage, transportation, safety, utilization of hydrogen gas, comparison with other	
TSO 6g.	Compare hydrogen energy with other	automobile fuels.	
-			
	automobile fuels. Describe the utility of hydrogen powered		

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2425603E

Practical/Lab Session Outcomes (LSOs)			Laboratory Experiment/Practical Titles	Relevant COs Number(s)	
LSO 1.1. LSO 1.2.	Identify the given component(s) used in Flat Plate Solar Collector. Explain the operation of the given component(s) of Flat Plate Solar Collector.	1.	Identify and demonstrate working of various components used in Flat Plate Solar Collector using test rig, models, charts, visits, simulated and real videos.	CO2	
LSO 2.1. LSO 2.2.	Identify the given component(s) used in Solar air heaters and Solar driers. Explain the operation of the given component(s) of Solar air heaters and Solar driers.	2.	Identify and demonstrate working of various components used in Solar air heaters and Solar driers using test rig, models, charts, visits, simulated and real videos.	CO2	
LSO 3.1. LSO 3.2.	Identify chemicals that have capability to store heat energy. Explain the chemical storage method user for solar energy.	3.	Prepare a desk top model for storing heat energy using chemical storage. Measure the quantity of heat stored and duration.	CO2	
LSO 4.1. LSO 4.2.	Correlate the effect of input parameters on the performance parameters of the given Flat Plate solar collector. Estimate the conversion efficiency of	4.	Measure the heat radiations received and heat collected in the given Flat Plate solar collector.	CO2	
LSO 4.3.	the given Flat Plate solar collector. Correlate the effect of input parameters on the performance parameters of the given Concentrating Parabolic trough solar collector.	5.	Measure the heat radiations received and heat collected using a Concentrating Parabolic trough solar collector with varying tracking angles. Compare its performance with the flat	CO2	
LSO 5.1. LSO 5.2.	Estimate the conversion efficiency of the given Concentrating Parabolic trough solar collector Compare the performance of the given Concentrating Parabolic trough solar collector with the flat plate collector.		plate collector.		
LSO 6.1.	Identify the component(s) of the given Solar energy device.	6.	Estimate the performance parameters in any one: Solar water heaters/Solar	CO2	
LSO 6.2.	Explain the operation of the given Solar energy device.		distillation/Solar still/Solar cooker.		
LSO 6.3.	Correlate the effect of input parameters on the performance parameters of the given Solar energy device.				
LSO 6.4.	Identify the component(s) of the given Solar energy device.	7.	Estimate the performance parameters in any one: Photovoltaic Solar panels, Solar PV pump,	CO2	
LSO 6.5.	Explain the operation of the given Solar-Electro energy device.		Solar Home lighting systems, Solar street lights.		
LSO 6.6.	Correlate the effect of input parameters on the performance parameters of the given Solar-Electro energy device.				
LSO 8.1.	Identify the given component(s) of Solar appliances like drier, cooker, lantern etc.	8.	Estimate the performance parameters in any one: Solar appliances like drier, cooker, lantern etc.	CO2	

oma in Mechanical Engineering		Semes	SBTE, Bihar	
Practical/Lab Session Outcomes (LSOs)		No.		Relevant COs Number(s)
LSO 8.2.	Explain the operation of the given Solar appliances like drier, cooker, lantern etc.			
LSO 8.3.	Correlate the effect of input parameters on the performance parameters of the given Solar appliances like drier, cooker, lantern etc.			
LSO 9.1.	Identify the components of a wind	9.	Study the operation of portable wind power	CO3
LSO 9.2.	power generation system. Explain the operation of the given wind power generation system.		generation system. Draw the characteristic curves of the generator and calculate constant of torque / current and voltage / speed of	
LSO 9.3.	Draw the characteristic curves of the given generator: Three-phase voltage depending on the speed of rotation.; Continuous voltage depending on the speed of rotation; Torque based on the generated current; Three-phase active power depending on the speed of rotation; Power in direct current as a function of the speed of rotation.		rotation of the generator.	
LSO 9.4.	Calculate constant of torque / current and voltage / speed of rotation of the given generator.			
	Identify the given component(s) of the rectifier.	10.	Evaluate performance of the rectifier and determine optimum operating points against variable atmospheric conditions	CO3
LSO 10.2.	Explain the operation of the given rectifier.			
LSO 10.3.	Correlate the effect of input parameters on the performance parameters of the rectifier.			
LSO 11.1.	Identify the given component(s) used in portable Biogas plant.	11.	Evaluate performance parameters of a portable Biogas plant with different mix of solid	CO4
LSO 11.2.	Explain the operation of the given component(s) of portable Biogas plant.		municipal waste.	
LSO 11.3.	Correlate the effect of input parameters on the performance parameters.			
LSO 12.1.	Identify the given component(s) used in Geothermal plant.	12.	Identify and demonstrate working of various components used in Geothermal plant using	CO5
LSO 12.2.	Explain the operation of the given component(s) of Geothermal plant.		models, charts, visits, simulated and real videos.	
	Identify the given component(s) used in Ocean Thermal Electric Conversion (OTEC) systems. Explain the operation of the given component(s) of Ocean Thermal	13.	Identify and demonstrate working of various components used in Ocean Thermal Electric Conversion (OTEC) systems using models, charts, visits, simulated and real videos.	CO5
LSO 14.1.	Electric Conversion (OTEC) systems. Identify the given component(s) used in Single basin and Double basin tidal power plants.	14.	Identify and demonstrate working of various components used in Single basin and Double basin tidal power plants using models, charts, visits, simulated and real videos.	CO5

Practi	Practical/Lab Session Outcomes (LSOs)		Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 14.2.	Explain the operation of the given component(s) of Single basin and Double basin tidal power plants.			
LSO 15.1.	Identify the given component(s) used in Proton exchange membrane fuel cells (PEMFCs), Solid oxide fuel cells (SOFCs), and alkaline fuel cells.	15.	L5. Identify and demonstrate working of various components used in Proton exchange membrane fuel cells (PEMFCs), Solid oxide fuel cells (SOFCs), and alkaline fuel cells using	CO6
LSO 15.2.	Explain the operation of the given component(s) of Proton exchange membrane fuel cells (PEMFCs), Solid oxide fuel cells (SOFCs), and alkaline fuel cells.		models, charts, visits, simulated and real videos.	

A judicial mix of minimum 14 or more practical need to be performed, out of which, the practical marked as '' are compulsory.

- L) Suggested Term Work and Self Learning: S2425603E Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - i. Quantify the harmful effects of pollutants from conventional energy sources.
 - ii. Briefly introduce the importance of energy sources in our daily lives and their impact on the environment.
 - iii. Create a table or chart comparing the energy sources you've discussed in terms of their environmental impact, efficiency, and availability.
 - iv. Prepare a chart of cumulative achievements of renewable energy sources in India.
 - v. Determine the collector efficiency of Solar flat plate collector.
 - vi. Identify the basic components of Solar water heater.
 - vii. Determine the collector efficiency of concentrating type flat plate collector.
 - viii. Identify of basic components of photo voltaic cell.
 - ix. Identify of basic components of Solar cooker.
 - x. Prepare a demonstration model of Wind energy conversion system
 - xi. Compare horizontal and vertical Wind mill.
 - xii. Explore the potential sites for Wind mill installation in India.
 - xiii. Identify the various components of Bio gas plant model.
 - xiv. Identify the different Bio gas digesters.
 - xv. List the Performance characteristics of Bio gas plant.
 - xvi. Slurry treatment parameters for efficient utilization of Bio gas fuels.
 - xvii. Identify the different parts of geothermal plant.
 - xviii. Justify the use of geothermal plant as a renewable source of energy.
 - xix. List the site selection criterion of geothermal plant.
 - xx. Identify the different parts of fuel cell.
 - xxi. Analyze the working of hydrogen powered vehicle.
 - xxii. Describe the chemical reactions in H2 O2 fuel cell.
 - xxiii. Enlist the practical fields where hydrogen is used as a fuel.
 - xxiv. Select one specific region or country and investigate its energy mix. Discuss the primary energy sources used, the reasons for their selection.
 - xxv. Identify and describe at least three different types of fuel cells. Discuss how each type works and their specific applications.
 - xxvi. Describe real-world applications of fuel cells in various sectors, such as transportation, stationary power generation, and portable devices.
 - xxvii. Describe the practical applications of geothermal energy.
 - xxviii. Create a table or chart comparing the geothermal energy sources in terms of their production country wise.

b. Micro Projects:

- i. Write a report summarizing the project, explaining the process of hydrogen production through electrolysis and its use in the fuel cell to generate electricity.
- ii. Write a report explaining how wave energy is converted into electrical energy in the wave energy model.
- iii. Create a visual display showcasing different renewable energy sources and their benefits.
- iv. Demonstrate the working principle of non conventional energy devices (at least three) with the help of classroom models.
- v. Construct a model of low cost Solar cooker.
- vi. Explore different methods for tilting the axis of Solar collector to adjust for variation in Solar energy during different hours of day.
- vii. Collect videos and user manuals related to maintenance of Wind mills and turbines components.
- viii. Prepare a report on various types of gear boxes used in Wind mills and turbines.
- ix. Prepare a list of mechanical components used in Wind mills and turbines.
- x. Collect videos related to maintenance of Bio gas plants.
- xi. Make a small model of low cost Bio gas plant.
- xii. Build lab and desk top model to harness energy from flowing drain water, Energy from mass mobility of human and vehicles at Railway stations, Malls, Highways by modifying speed breakers, steps, stairs etc.
- xiii. Build lab scale/desktop model to produce energy from wood Gasifier.
- xiv. Build lab scale/desktop model to produce diesel from plastic waste.
- xv. Build lab scale/desktop model to produce diesel from used vegetable oil.
- xvi. Prepare a report on performance of various Geothermal, OTEC and Tidal energy systems and subsystems available in our country.
- xvii. Collect state wise information of usage of Fuel cells and Hydrogen Energy through www.

c. Other Activities:

- 1. Seminar Topics:
 - Energy from kitchen waste
 - Diesel from plastic waste
 - Domestic Solar appliances
 - Micro wind turbines
 - Energy from wind ventilators
 - Portable biogas plants
 - Diesel from Rubber tire waste
 - Pico hydro turbines for flowing water in pipes and trenches
 - Bio diesel from Jatropha, Neem seed and other biomass.
- 2. Visits:
 - Visit a nearby power plant/industry related to renewable or alternate energy and prepare a report on the type of input raw materials used, equipment/method used type of energy produced, capacity, quantity of input material required, waste produced during energy generation, energy storage and transportation.
 - Visit nearby municipal/ private garbage/waste management plant and prepare a report on how CNG/ Diesel/Electricity is produced from the waste.
- 3. Self-Learning Topics:
 - Position of India in Solar, Wind and Hydro power generation.
 - Tidal energy
 - Hydrogen as an IC Engine fuel
 - Micro wind mills
 - Solar water heaters
 - Solar Driers
 - Gasifiers

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co				
	Theory Assessment (TA)** Term Work Assessment (TWA)						ment (LA) [#]
Progressive End Theory Term Work& Self Learning Theory Assessment Assessment Assessment (ETA) Assessment				0	Progressive Lab Assessment	End Laboratory Assessment	
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)
	Sem Test			Projects	Activities*		
CO-1	15%	15%	15%	-	-	-	-
CO-2	20%	20%	20%	20%	20%	40%	20%
CO-3	20%	20%	20%	20%	20%	15%	20%
CO-4	20%	20%	20%	20%	20%	15%	20%
CO-5	15%	15%	15%	20%	20%	15%	20%
CO-6	10%	10%	10%	20%	20%	15%	20%
Total	30	70	20	20	10	20	30
Marks				50			

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

The percentage given are approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (Cl) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Introduction to Energy Sources	10	CO1	14	4	4	6
Unit-2.0 Solar Energy	07	CO2	12	4	3	5
Unit-3.0 Wind Energy	07	CO3	10	3	3	4
Unit-4.0 Energy from Biomass	07	CO4	10	3	3	4
Unit-5.0 Geothermal Energy, Energy from Oceans	10	CO5	14	3	5	6
Unit-6.0 Fuel Cells and Hydrogen Energy	07	CO6	10	3	3	4
Total	48		70	20	21	29

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested AssessmentTable for Laboratory (Practical):

		Delevent		PLA/ELA	
S.	Lobovatowy Dynatical Titlas	Relevant	Perfor	mance	Viva-
No.	Laboratory Practical Titles	COs	PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
1.	Identify and demonstrate working of various components used in Flat Plate Solar Collector using test rig, models, charts, visits, simulated and real videos.	CO2	40	50	10
2.	Identify and demonstrate working of various components used in Solar air heaters and Solar driers using test rig, models, charts, visits, simulated and real videos.	CO2	40	50	10
3.	Prepare a desk top model for storing heat energy using chemical storage. Measure the quantity of heat stored and duration.	CO2	40	50	10
4.	Measure the heat radiations received and heat collected in the given Flat Plate solar collector.	CO2	40	50	10
5.	Measure the heat radiations received and heat collected using a Concentrating Parabolic trough solar collector with varying tracking angles. Compare its performance with the flat plate collector.	CO2	40	50	10
6.	Estimate the performance parameters in any one: Solar water heaters/Solar distillation/Solar still/Solar cooker.	CO2	40	50	10
7.	Estimate the performance parameters in any one: Photovoltaic Solar panels, Solar PV pump, Solar Home lighting systems, Solar street lights.	CO2	40	50	10
8.	Estimate the performance parameters in any one: Solar appliances like drier, cooker, lantern etc.	CO2	40	50	10
9.	Study the operation of portable wind power generation system. Draw the characteristic curves of the generator and calculate constant of torque / current and voltage / speed of rotation of the generator.	CO3	40	50	10
10.	Evaluate performance of the rectifier and determine optimum operating points against variable atmospheric conditions	CO3	40	50	10
11.	Evaluate performance parameters of a portable Biogas plant with different mix of solid municipal waste.	CO4	40	50	10
12.	Identify and demonstrate working of various components used in Geothermal plant using models, charts, visits, simulated and real videos.	CO5	40	50	10
13.	Identify and demonstrate working of various components used in Ocean Thermal Electric Conversion (OTEC) systems using models, charts, visits, simulated and real videos.	CO5	40	50	10
14.	Identify and demonstrate working of various components used in Single basin and Double basin tidal power plants using models, charts, visits, simulated and real videos.	CO5	40	50	10
15.	Identify and demonstrate working of various components used in Proton exchange membrane fuel cells (PEMFCs), Solid oxide fuel cells (SOFCs), and alkaline fuel cells using models, charts, visits, simulated and real videos.	CO6	40	50	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

Semester- VI

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S.	Name of	Broad	Relevant
No	Equipment, Tools	Specifications	Experiment/Pra
	and Software		ctical Number
1.	Flat plate Solar	Orientation Vertical (Portrait)	1,4
1.	collector	Height / Width / Depth (mm) 2035 / 1233 / 80	1,4
	conector	Overall collector area (mm) 2.51	
		Aperture area (m2) 2.35	
		Absorber area (m2) 2.32	
		Weight (empty) (kg) 38	
		Capacity (solar fluid) (I) 1.85	
		Solar glass transmission (%) 91	
		Solar radiation absorption (%) 95	
		Solar radiation emission (%) 5	
		Efficiency (%) 79.0 Efficiency coefficient a1 (W/M2K) 2.41	
		Efficiency coefficient a2 (W/M2K2) 0.049	
		Max operating pressure (bar) 10	
		Stagnation temperature (<c) 210<="" td=""><td></td></c)>	
		Certification CE 0036 & Solar Keymark	
		Absorber Sheet Aluminium	
		Absorber plate coating Sunselect (selective)	
		Absorber tube Copper	
		Absorber tube joints Laser welded	
		Frame Aluminium Extruded sides / sheet rear	
		Glazing Safety glass (low iron), 3.2mm	
		Rear insulation 40mm	
		Solar fluid Water / propylene glycol	
-		Flow / return connections DN 16 (G3/4")	-
2.	Parabolic trough Solar	Parabolic trough reflecting surface Reflectors with aluminium sheet or	5
	collector with tracking	mirror	
	system	Total Collector Area 288m2	
		Number of collector modules 48	
		Number of collectors per row 8	
		Number of rows 6	
		Area of each module 6m2	
		Module power 2 kW	
		Coated receiver tubes enclosed in glass	
		Fluid Inlet Temperature (nominal) 110 C	
		Fluid Outlet Temperature (nominal) 220 C	
		Tracking- Moves East-West Fixed North-South; Control system-	
		Programmable Logic Controller (PLC) or Manual; Drive mechanism-	
		Servo or Stepper motor, single axis.	
3.	Storage water heater	Material - SS	6
	test rig for laboratory	Frequency-50/60	
		Phase- Single/Three	
		Body Material	
		Usage/Application-Laboratory Equipment	
		Collector area-3 m2	
		Intercept efficiency-0.76	

	na in Mechanical Enginee		SBTE, Bihar
S.	Name of	Broad	Relevant
No	Equipment, Tools	Specifications	Experiment/Pra
	and Software		ctical Number
		Efficiency slope-15.48 kJ/hrm2K	
		Tested flow rate-72kg/hrm2	
		Collector slope-45 Degrees	
		Tank volume-0.2m3	
		Overall loss coefficient-5.4kJ/hrK	
		Maximum heating rate-6500kJ/hr	
4.	Standalone Solar P V	Specifications Panel Size: 250 W, Li Fe Battery, Inverter and Load Bank.	7
4.	System Test Rig for	Voltmeter and Ammeter for the measurement output of the panel.	/
	Laboratory	Powder Coated MS Structure .	
	Laboratory	Number Of Phases Single Phase	
		Sliding Speed 1400 rpm	
		Pipe Diameter 100 mm	
		Cooling Tower Air Cooled	
-	Calan Davan	Accuracy +- 2%	0
5.	Solar Dryer	Thickness of insulation to drying box13 mm cork-sheet	8
		Number of drying trays-1	
		Size of the drying tray-560 x 560 mm	
		Solar air heating collector area 0.376 m2	
		Overall size of the storage box- 660 x 610 x610 mm3	
		Type of the fan-12V, DC. Size: 13x13mm2	
		Top cover of the box=Glass covers of 4 mm	
		Thickness of the PVC-Sheet thick 5 mm	
		Inclination of the solar glass with respect horizontal-25°	
_			6 7 0
6.	Solar appliances like		6, 7, 8
	drier, cooker, lantern	Polycarbonate or Shane, LED SMD LED, SPV Module High efficiency	
	etc.	silicon cell based SPV module, Battery 12V-7.2Ah @ C-20 SMF lead	
		acid battery of Absorbed Electrolyte type.	
		 Solar Fan: High speed ceiling fan, Operated by 12V DC 1.5A, RPM = 320, SIZE = 1200MM, MULTI SPEED 	
		• Solar Air drier: can generate hot air with temperature ranges from	
		40°C to 100°C. used for removing moisture from variety of	
		agricultural products and food items without causing any harmful	
		affect	
		Solar water pumps	
		Solar torches	
		 Solar street lighting systems 	
		 Solar traffic blinker 	
7.	Windmill Power Plant	Solar mobile charger Structure of anodized aluminum	0.10
/.		Structure of anodized aluminum.	9, 10
	Trainer	Single-phase network analyzer with indication of active, reactive and	
		apparent power, current, voltage, frequency, power factor, etc.	
		Three-phase synchronous generator of permanent magnets.	
		Battery Charge Controller: Regulator with operation 12 or 24V DC, and	
		maximum current = 10A. Maximum input voltage = 45V.	
		Battery of 12V 12Ah.	
		1.5 kW asynchronous motor.	
		STECA 200VA 230V / 50Hz inverter.	
		Frequency inverter 1,5 kW.	
		Data acquisition module.	
		Computer with software (SCADA system).	
		DIMENSIONS: Generator-engine structure: 790x450x80 mm.	
		Panel modules structure: 1080x510x1150 mm.	
		Input: 230V/50Hz.	
8.	Demonstration model	Portable Domestic Biogas Plant	11
	of Biogas plant.	Plant Capacity: 1 Cubic Meter, 1 Kg	1

Diplor	na in Mechanical Enginee	ering Semester- VI	SBTE, Bihar
S. No	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Pra ctical Number
		Usage/Application: Making Cooking Gas Area to Be Covered: 4 feet X 4 feet Waste Input: 1 Kg Body: Plastic With pipe, pressure gauge, regulator and burner	
9.	Models, Charts and videos related to non- conventional sources of energy	Standard	All

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Non-conventional Energy Sources	G D RAI	Khanna, ISBN-10. 9788174090737 ISBN-13. 978-8174090737
2.	Non-conventional Energy Sources and Utilization	O. P. Khanna	S. Chand
3.	Non-conventional Sources of Energy (Hindi)	S.S.L. PATEL	Standard Publishers and Distributors

(b) Online Educational Resources:

- 1. https://onlinecourses.nptel.ac.in/noc22_me75/preview
- 2. Introduction: http://indiacore.com/bulletin/kssidhu-non-conventional-energy-resources.pdf
- 3. Introduction : http://www.newagepublishers.com/samplechapter/000329.pdf
- Wind turbines : http://wind.machinereliability.com/?adtype=Maschinenausf%C3%A4lle&addate=20161117&gclid=CJ350N6Wk9QCFdKH aAodYLICXw
- 5. Wind turbines : http://www.awea.org/operations-and-maintenance
- 6. Wind turbines : http://www.windmeasurementinternational.com/wind-turbines/om-turbines.php
- 7. Wind turbines : https://www.gerenewableenergy.com/wind-energy/turbine-services/wind-turbine-maintenance.html
- 8. Wind turbines : https://www.wind-energy-the-facts.org/operation-and-maintenance-costs-ofwind-generated-power.html
- 9. Wind turbines : http://archive.northsearegion.eu/files/repository/20120320111424_PC_Skills-Compendiuminmaintenance.pdf
- 10.Solar panels : https://www.thesolarco.com/how-to-maintain-your-solar-panels/
- 11.Solar panels : http://www.wikihow.com/Maintain-a-Solar-Panel
- 12.Solar panels :

http://www.poweringhealth.org/Pubs/Guyana_Solar_PV_Systems_Maintenance_Guide.pdf

- 13.Parabolic trough collector maintenance: http://mnre.gov.in/file-manager/UserFiles/CST-Manuals/PTC_E.pdf
- 14.Flat plate solar collector maintenance: http://www.htproducts.com/literature/lp-364.pdf
- 15.Specifications of solar devices: http://mnre.gov.in/information/systems-specifications/

16.Biogas plants :

- http://www.snv.org/public/cms/sites/default/files/explore/download/handbook_on_operation_an d_maintenance_of_biogas_plants_bio-slurry_use_and_management.pdf
- 17. Biogas plants : http://collections.infocollections.org/ukedu/en/d/Jg33ime/15.html
- 18. Biogas plants : https://www.youtube.com/watch?v=iOsixN3nTsc
- 19. Solar cooker : https://www.youtube.com/watch?v=7rYFXCciEx4
- 20. Solar cooker : http://www.sempersolaris.com/guide-solar-cookers/
- 21. Wind turbine : https://www.youtube.com/watch?v=oPhNQ35_Dwo
- 22.Wind turbine : https://www.youtube.com/watch?v=OzfM9NVgcjI
- 23.Wind turbine : https://www.youtube.com/watch?v=haPheNEitHQ

24.Fuel cells: <u>https://www.youtube.com/watch?v=_TqSU21aWoA</u>

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Lab Manuals
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Manufacturers' Catalog
- 5. Learning Packages

Diploma in Mechanical Engineering		Semester- VI	SBTE, Bihar
A)	Course Code	: 2400604B(T2400604B/P2400604B/S2400604B)	
B)	Course Title	: Artificial Intelligence (Advanced)	
C)	Pre- requisite Course(s)	: Artificial Intelligence (Basic)	

:

D) Rationale

In Artificial Intelligence (Basic) course, students have learned the basics for Artificial Intelligence problem solving techniques, data analytics and articulates the different dimensions of these areas. This Artificial Intelligence (Advance) course offers the students the comprehension of Machine learning which is a subset of artificial intelligence in the field of computer. The course also exposes students to Tens or flow a Python-based open source library for numerical computation used in machine learning and developing neural networks. After completing the course students will be able to implement various techniques used in machine learning and neural networks using open source tools.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Elaborate the use of Machine learning in Artificial Intelligence.
- **CO-2** Implement various supervised and unsupervised learning models and methods.
- CO-3 Illustrate Artificial neural networks and its applications.
- CO-4 Implement various Neural network models and Learning Methods.
- **CO-5** Solve machine learning and artificial neural network problems using Tens or flow.

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes(POs)								Programme Specific Outcomes* (PSOs)	
Outcomes (COs)		PO-2 Problem Analysis	PO-3 Design/De velopment of Solutions		PO-5 Engineering Practices for Society, Sustainabilityand Environment	PO-6 Project Manageme nt	PO-7 Life Long Learning	PSO-1	PSO-2	
CO-1	-	2	2	-	-	-	1			
CO-2	3	3	3	3	-	-	2			
CO-3	-	3	3	3	-	-	2			
CO-4	3	1	3	3	-	-	2			
CO-5	3	3	3	3	-	-	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

: PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)						
Code	Title Classro Instruc (Cl		uction	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credit (C)	
		L	T	、		. ,	(-)	
2400604B	Artificial intelligence (Advanced)	03	-	04	02	09	06	

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances/ problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCS, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	sessment So	cheme (Mar	ks)		
		Theory Assessment		Term V	Vork &	Lab Ass	sessment	
		(1	ГА)	Self-Le	arning	(LA)	~
					Assessment			
	-			(ТV	VA)		1	-AV
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
	Artificial							
2400604B	Intelligence	30	70	20	30	2	30	200
	(Advanced)					0		

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400604B

Major Theory Session Outcomes (TSOs)	Units	Relevant Cos Numbei (s)
	Unit – 1.0: Introduction to machine learning	CO-1
learning TSO 1b. Explain the concept of dataset and ways to handle them TSO 1c. illustrate the process of dataset division TSO 1d. Explain process involved in machine learning	Concept of Machine Learning, Define Learning, Learn the Network, Evaluate the Network, datasets and ways to handle them, Feature sets, Dataset division: test, train and validation sets, cross validation. Applications of Machine Learning, processes involved in Machine Learning	
 TSO 2b. Use Linear regression for predictive analysis TSO 2c. Predict the categorical dependent variable using Logistic Regression TSO 2d. Use SVM for classification problems in Machine Learning TSO 2e. determine the performance of the classification models TSO 2f. evaluate the performance of the classification model using ROC- curve TSO 2g Explain characteristics of Unsupervised learning. 	Unit 2.0: Supervised and unsupervised learning Supervised learning: Introduction to Supervised Learning, K- Nearest Neighbor, Linear Regression, Logistic Regression, Support Vector Machine (SVM), Evaluation Measures: confusion matrix, precision, precision and recall, ROC-Curve (Receiver Operating Characteristic curve) Unsupervised learning: Introduction to Unsupervised Learning, Introduction to clustering, Types of Clustering: Hierarchical, Agglomerative Clustering and Divisive clustering; Partitional Clustering - K-means clustering. Expectation-	CO-2
TSO 2h. Explain different clustering methods TSO 2i. Implement K-means clustering algorithm to group the unlabeled dataset TSO 3a. Explain Structure and working of Biological Neural Network.	Maximization (EM) Algorithm Unit 3.0: Introduction to neural networks	CO-3
 TSO 3b. differentiate between Artificial Neural Network and Biological Neural Network TSO 3c. State key historical points in development of ANN TSO 3d. Explain the architecture of an artificial neural network 	Structure and working of Biological Neural Network, Fundamentals of Artificial Neural Networks & Applications, Characteristics of Artificial Neural Networks, History of neural network research, characteristics of neural networks terminology.	
 TSO 4a. Use neuron McCulloch – Pitts model in designing logical operations TSO 4b. Apply Rosenblatt's Perceptron to solve linear classification problems TSO 4c. Implement Adaptive Linear Neuron (Adaline) training algorithm in neural network TSO 4d. Use Backpropagation neural training algorithm TSO 4e. Use ART (Adaptive Resonance Theory) learning model TSO 4f: Implement Bidirectional Associative Memory (BAM) model in Artificial Neural Network 	learning laws, Topology of neural network architecture, Multilayer Neural Networks, Learning Methods, Backpropagation, Counter propagation, Adaptive Resonance Theory (ART), Associative memories, BAM.	CO-4
	Unit-5.0 Tensor flow features of TensorFlow, Tensor Data structure- Rank, shape, type, one dimension	CO-5

Semester- VI

		301E, Dillai
Major Theory Session Outcomes (TSOs)	Units	Relevant Cos Number
visualization TSO 5d Explain the concept and features of Tens or flow playground	and two-dimension tensor, Tensor handling and manipulations, Tensor board visualization- symbols Tensors, Variables, Automatic differentiation, Graphs and tf.function, modules layers and models, training loops, features of Tens or flow playground- data ,the ration of train and test data, features, hidden layers, Epoch,	(s)
	learning rate, activation function, regularization, problem type	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400604B

Practical/Lab SessionOutcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1 Implement data classification algorithms	1	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Python ML library classes can be used for this problem.	CO-2
LSO 2.1 Implement Machine learning algorithms LSO 2.2 Evaluate the performance of classification model	2	 (a) Implement SVM for Iris Dataset- download the dataset from (https://gist.github.com/netj/8836201) (b) Find confusion matrix and evaluation matrix for SVM Hint: SVM model can be constructed using sklearn command, import pandas as pd from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score 1. Read the csv Iris dataset file 2. Condition the data 3. Condition the training and Testing data 4. Construct the Linear model 5. Test the model with Linear kernel 6. Prepare Classification Report 	CO-2
LSO 3.1 Perform clustering operations using k-means algorithm	3	a) Explore k-means algorithm for the small sample dataset. b) Explore k-means algorithm for Iris Dataset	CO-2
LSO 4.1 Perform clustering operations using EM algorithm	4	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k- Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Python ML library classes/API in the program.	CO-2

Practical/Lab SessionOutcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 5.1 Build artificial neural network LSO 5.2 Test artificial neural network	5	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.	CO-4
LSO 6.1 Detect features or business intelligence in the input data using perceptron	6	Implement the perceptron algorithm from scratch in python.	CO-4
LSO 7.1 Use Tensors for given problems	7	Write a programme to implement two dimension and three-dimension Tensor.	CO5
LSO 8.1 Use basic features for tensor handling and manipulations	8	Write a programme to add and multiply two 4x4 matrix, you can Import "tens or flow" and "numpy".	CO5
LSO 9.1 Test artificial intelligence (AI) algorithms through the use of Google's TensorFlow machine learning libraries.	9	Solve a classification problem on the Tens or flow playground. Hint: refer https://www.educba.com/tensorflow- playground/	CO5
LSO 10.1 Implement artificial intelligence (AI) algorithms through the use of Google's TensorFlow machine learning libraries LSO 10.2 perform predictive analysis using linear regression	10	Implement algorithm for linear regression in tens or flow	CO5, CO2

- L) Suggested Term Work and Self Learning: S2400604B Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in linewith the targeted COs.

b. Micro Projects:

Use python programming for the solutions of Microproject problems

- 1. (a) Create a Bar plot to get the frequency of the three species of the Iris data.(b) Create a Pie plot to get the frequency of the three species of the Iris data.
 - (c) Write a Python program to create a graph to find relationship between the sepal length and

width.

2. (a) Write a Python program to split the iris dataset into its attributes (X) and labels (y). The X variable contains the first four columns (i.e. attributes) and y contains the labels of the dataset.

(b) Write a Python program using Scikit-learn to split the iris dataset into 70% train data and 30% test data. Out of total 150 records, the training set will contain 120 records and the test set contains 30 of those records. Print both datasets.

3. Conduct performance analysis of Classification Algorithms (any 2) on a specific dataset.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be assessed to calculate CO attainment.

	Course Evaluation Matrix								
	Theory Assessment (TA)** Term Work Assessment (TWA)				t (TWA)	Lab Assessment (LA) [#]			
COs	Progressive Theory Assessment (PTA)	End Theory Assessme nt(ETA)	Term Work & Self-Learning Assessment			Progressive Lab Assessment	End Laboratory Assessment		
	Class/Mid		Assignments	ignments Micro		(PLA)	(ELA)		
	Sem Test			Projects	Activities*				
CO-1	20%	15%	30%	20%	30%				
CO-2	10%	25%	20%	20%	20%	30%	33%		
CO-3	30%	25%	30%	20%	20%				
CO-4	20%	20%	20%	20%	30%	30%	33%		
CO-5	20%	15%	10% 20%		40%	34%			
Total	30	70	20	20	10	20	30		
Marks			50		1				

Legend:

* Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

** : Mentioned under point- (N)

: Mentioned under point- (O)

Note:

• The percentage given are approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total Relevant		Total	ETA (Marks)			
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0. Introduction to machine learning	08	CO1	11	5	4	2	
Unit-2.0. Supervised and unsupervised learning	10	CO2	18	5	6	7	
Unit-3.0 . Introduction to neural networks	10	CO3	17	5	7	5	
Unit-4.0. Neural networks models and Learning Methods	10	CO4	14	3	3	8	
Unit-5.0. Tensor flow	10	CO5	10	2	6	2	
Total Marks	48		70	20	26	24	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant	-	PLA/ELA	
S.	Laboratory Practical Titles	COs	Perforr	nance	Viva-
No.		Number(s)	PRA* (%)	PDA** (%)	Voce (%)
1.	Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print both correct and wrong predictions. Python ML library classes can be used for this problem.	CO-2	-	90	10
2.	 (a) Implement SVM for Iris Dataset- download the dataset from (https://gist.github.com/netj/8836201) (b) Find confusion matrix and evaluation matrix for SVM 	CO-2	-	90	10
3.	a) Explore k-means algorithm for the small sample dataset. b) Explore k-means algorithm for Iris Dataset	CO-2	20	70	10
4.	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Python ML library classes/API in the program.	CO-2	-	90	10
5.	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.	CO-4	10	80	10
6.	Implement the perceptron algorithm from scratch in python.	CO-4	10	80	10
7.	Write a programme to implement two dimension and three- dimension Tensor.	CO-5	-	90	10
8.	Write a programme to add and multiply two 4x4 matrix, you can Import "tens or flow" and "numpy".	CO-5	-	90	10
9.	Solve a classification problem on the Tens or flow playground.	CO-5	20	70	10
10.	Implement algorithm for linear regression in tens or flow	CO-2, CO-5	10	80	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

- **Note:** This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.
- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Group Discussion, Portfolio Based Learning, Live Demonstrations in Classrooms, Lab, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Computer Systems	Desktop Computers with i3 processor, 16 GB RAM, 512 GBHDD	S. No. 1 to 10
2.	Online Python IDE	https://www.online-python.com/	S. No. 1 to 10
3.	Jupyter Notebook	Download from https://jupyter.org/	S. No. 1 to 10
4.	Pip Python package manager	Download Pip 22.3 From https://pypi.org/project/pip/	S. No. 1 to 10
5.	Google colab	https://colab.research.google.com/github/tensorflow/docs/blo b/master/site/en/tutorials/quickstart/beginner.ipynb#scrollTo= DUNzJc4jTj6G	
6.	Various modules, Libraries and Packages	Tens or flow, NumPy, Pandas, package	S. No. 1 to 10

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Machine Learning using Python	Manaranjan Pradhan, U Dinesh Kumar	Wiley,ISBN-10: 8126579900 ISBN-13: 978-8126579907
2.	Introduction to Machine Learning	Jeeva Jose	Khanna Book Publishing Co. (P) ltd, 2020. ISBN-10: 9389139066 ISBN-13: 978-9389139068
3.	Machine Learning for Dummies	John Paul Mueller and Luca Massaron, For Dummies,	For Dummies; 2nd edition, ISBN-10: 1119724015 ISBN-13: 978-1119724018
4.	Machine Learning	Rajeev Chopra	Khanna Book Publishing Co., 2021 ISBN-10: 9789386173423 ISBN-13: 978-9386173423
5.	Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python	Pramod Singh, Avinash manure	Apress, 978-1484255605 ISBN-10: 1484255607 ISBN-13: 978-1484255605
6.	Artificial Intelligence: Concepts, Techniques and Applications	Alexis Keller	States Academic Press, 2022 ISBN- 9781649649245
7.	Artificial Intelligence: An Introduction	Jacob Pearson	Willford Press 2022 ISBN 9781682860911
8.	Fundamentals of Machine Learning	Mia Williams	Willford Press 2022 ISBN 9781682860920
9.	Artificial Intelligence: A Modern Approach	Emilia Stones	Larsen and Keller Education 2022 ISBN 9781641728525

(b) Online Educational Resources:

- 1. NPTEL Course: Introduction to Machine Learning, Prof. Balaraman Ravindran, IIT Madras
- 2. https://www.tensorflow.org/resources/learn-ml
- 3. https://www.tutorialspoint.com/tensorflow/index.htm
- 4. https://www.javatpoint.com/tensorflow
- 5. https://developers.google.com/machine-learning/crash-course/exercises

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested OER, before use by the students.

(c) Others: -

Data Source:

- https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/
- https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
- https://www.kaggle.com/arshid/iris-flower-dataset
- https://www.kaggle.com/rohankayan/years-of-experience-and-salary-dataset

Diploma in Mechanical Engineering		Semester- VI	SBTE, Bihar
A)	Course Code	: 2400604C(T2400604C/P2400604C/S2400604C)	
B)	Course Title	: Internet of Things (Advanced)	
C)	Pre- requisite Course(s)	: IoT (Basics), Computer Networks	
5)	Dettemple		

D) Rationale

The rise and rise of IoT technologies is redefining business opportunities and process. This has led to a growing need to learn advance skills to remain competitive in the market. Put together, these are a potent combination of technologies that will dictate how our future is written, which is a strong indicator of rewarding job opportunities in those domains. Introduction of the Advanced IoT follows a rigorous curriculum which blends the academic excellence and industry-relevant applications.

This course will be exposed to a breadth of skills which will help students to become multi-faceted software engineers with a deeper understanding of these modern technologies, their applications, and interdependence.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-Use basic Python features in Programming. Use advance Python features in Programming. Explain features of Cloud and IoT data storage on it. Explain IoT Networking and its application. Develop IoT App for the given problem

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Deve lopment of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
	3	3	2	2	-	2	-		
	3	3	2	2	-	2	-		
	1	-	3	2	2	2	2		
	1	-	2	3	-	2	2		
	3	3	3	2	2	3	3		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course		Scheme of Study (Hours/Week)					
Course Code	Course Title	Classroom Instruction (CI)		Lab Instructio n	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L	Т	(LI)				
2400604C	loT (Advanced)	03	-	04	02	09	06	

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances/ problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCS, spoken tutorials, Online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			ŀ	Assessment Se	cheme (Marks	s)			
a		Theory Assessment (TA)		Term Work & Self- Learning Assessment (TWA)		Lab Assessment (LA)		WA+LA)	
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+T	
2400604C	IoT Advanced)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments,

seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

ETA & ELA are to be carried out at the end of the term/ semester.

Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J)

Theory Session Outcomes (TSOs) and Units: T2400604C

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TCO 1 - Write the store to install Dither	Unit 1.0 Puthon Parisa	
 TSO.1. a. Write the steps to install Python. TSO.1. b. Explain given types of variables in python. TSO.1. c. Explain use and importance of Tuple, Dictionary, operators in python TSO.1. d. Explain use of array in python. TSO.1. e. Explain use of 2-Dimensional Array in python TSO.1. f Explain uses of given type of Conditional statement in python. 	 Unit-1.0 Python Basics: - Installation of Python Variables, Print () function, Escape character sequence and run python Program Python Tuple, Dictionary, operators Python arrays, create, reverse and append data into it. Python 2 Dimensional arrays. Python Conditional statement.	CO-1 and CO-5
TSO.2. a. Explain uses of given type of do & while loops in python	Unit 2.0 Python Advance: -	CO-1 and CO5
 TSO.2. b. Explain working of break, continue and pass statement in python TSO.2. c. Write the benefits of using OOP methodology in python. TSO.2. d. Explain given type of string operation related to python. TSO.2. e. Explain given function in python TSO.2. f Explain use of Lambda function in python. 	 2.1 Python Do & while loops 2.2 Python break, continue, pass statements 2.3 Python OOPs Class, Object, Inheritance and Constructor 2.4 Python Strings Replace, Join, Split, Reverse, Uppercase, Lowercase, count, find, split and length 2.5 Python Functions, Built-in functions and user defined functions 2.6 Lambda function and uses 	
TSO.3. a. Differentiate between Cloud and IoT cloud.	Unit-3.0 Cloud Features: -	CO-1, CO-2
 TSO.3. b. Explain features of Cloud in IoT environment TSO.3. c. List features of various types of Cloud TSO.3. d. List features of cloud services like SaaS, PaaS and IaaS TSO.3. f List advantages of cloud data storage. TSO.3. g Explain Arduino architecture and its applications. TSO.3.h Explain Raspberry pi architecture and its applications. 	Cloud computing and IoT cloud Benefits of cloud in IoT Types of Cloud public, private and hybrid Cloud services like SaaS, PaaS and IaaS Cloud connectivity and Data storage on Cloud. Arduino: Architecture, Programming, and Applications Raspberry Pi Architecture, Programming, and Application basic level for IoT applications	and CO-5
TSO.4. a. Explain wired network	Unit.4.0 IoT Networking and Application: -	CO-1 and
 TSO.4. b. Explain short range wireless network TSO.4. c. Explain M2M communication TSO.4. d. Explain various generation of wireless network TSO.4. e. Explain the importance of LWPAN in IoT TSO.4. f Differentiate between SigFox & LoRaWAN TSO.4. g Explain use of NB-IOT (Narrow Band IOT) TSO.4.h Create heterogenous network using RFID. 	 4.1 Wired and short-range wireless network 4.2 M2M – 2G, 3G, 4G & 5G networks 4.3 LPWAN – Low Power Wide Area Networks 4.4 SigFox & LoRaWAN. 4.5 NB-IOT (Narrow Band IOT) 4.6 RFID and Bar code basics- Components of an RFID system-Data -Tags-Antennas- Connectors-Cables- Readers- encoder/ printers for smart labels- Controllers software 4.7 RFID advantages over Bar codes. 	CO-4

Semester- VI

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
 TSO.5. a. Identify suitable framework for IoT app development TSO.5. b. Identify various stages of selected app TSO.5. c. Develop the app. TSO.5. d. Implement and deploy the app TSO.5. e Maintain and improve the app based on the feedback 	Unit. 5.0 IoT App Development: - Framework selection for IoT app development Identify stages of app to be developed. Develop, Implement, and Deploy the App Testing and Integration Maintain and improve	CO-4 and CO-5

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400604C

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1 Python installation LSO 1.2 Prepare and run python program on given problem LSO 1.3 Prepare python program on Dictionary, Tuple and operators. LSO 1.4 Prepare program on arrays LSO 1.5 Prepare a program on 2-dimensional array LSO 1.6 Create program on conditional statement	1.	 Install given version of Python on the computer system. Prepare a python program using print() function and run it. Access given value from the tuple Print the given value of key from the dict. Write a Python program to create an array of 5 integers and display the array items. Access individual element through indexes Write a Python program which takes two digits m (row) and n (column) as input and generates a two-dimensional array. Write a python program to check whether person is eligible for voting or not. (accept age from the user) Write a python program to check whether the entered number is even or odd. Write a python program to check whether the entered number is divisible by another entered number. Write a python program to display "Yes" is entered number is divisible by 5 otherwise display "No" 	CO-1
 LSO 2.1 Prepare python program on Do & while loops LSO 2.2 Prepare python program on break and continue statement. LSO 2.3 Prepare Python program using break and continue statements LSO 2.4 prepare python program using OOP LSO 2.5 Prepare Python program using functions 	2.	 Prepare a python program which can print first 10 even and odd numbers using while statement Write a python program which can print first 10 integers and its square using while/for loop. Write a python program which can print sum of first 10 natural numbers using while/for loop. Write a python program which can identify the prime number between the range given using while/for loop. Consider a situation where you want to iterate over a string and want to print all the characters until a letter 'e' or 's' is encountered. It is specified that you have to do this using loop and only one loop is allowed to use. 	CO-2

oma in Mechanical Engineering		Semester- VI		
Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)	
		Consider the situation when you need to write a program which prints the number from 1 to 10 and but not 6. It is specified that you have to do this using loop and only one loop is allowed to use.		
		Create a Class with instance attributes Create a Vehicle class without any variables		
		and methods Write a Python function to find the Max of three numbers.		
		Write a Python program to reverse a string.		
Signup for free cloud storage Store data into cloud and retrieve it.	3.	Create a free cloud account Store data on cloud and retrieve it	CO-3	
LSO 4.1 Design various types of network cables LSO 4.2 Connect computer in LAN. LSO 4.3 Connect devices using wireless network LSO 4.4 Connect machine with machine LSO 4.5 Connect devices using IEEE 802 LSO 4.6 Connect devices using LPWAN LSO 4.7 Connect devices using RFID	4	 4.1 Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool. 4.2 Connect the computers in Local Area Network 4.3 Connect 2 or more devices using Bluetooth 4.4 Connect 2 or more devices using infrared 4.5 Connect 2 more machine using m2m 4.6 Connect 2 or more different devices using access point 4.7 Connect 2 devices using LPWAN (Smart Meter) 4.8 Connect 2 or more devices using DELD 	CO-4	
LSO 5.1 Develop a IoT app	5.	4.8 Connect 2 or more devices using RFID 5.1 Identify a problem and develop an app	CO-5	
LSO 5.2 Develop IoT applications using smartphones.		5.2 Building a temperature monitoring system using sensors and Smartphone		

L) Suggested Term Work and Self Learning: S2400604C Some sample suggested assignments, micro project and other activities are mentioned here for reference.

Assignments: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

Micro Projects:

Prepare a report on Python programming language. Develop a small software in python to solve a IoT data analysis. Create a id on free cloud storage and share data on it for others. Create a heterogenous network and connect different dives. Create a an IoT app for the identified problem

Other Activities:

Seminar Topics: - "Future of wireless network."

"Smart electricity billing ", "Cloud computing and IoT"

Visit to industry for IoT implementation in industrial process.

Reading RFID cards using 8051- RFID in the supply chain- Vehicles parking using RFID- library management system- electronic toll payment- smart shipping containers fleet monitoring and management.

Building IoT Applications like pressure, air quality, temperature and motion detector using Arduino and raspberry-pi Universal boards.

Surveys of market for availability of various types of network devices and its pricing.

Product Development: Development of projects for real life problem solution app.

Software Development: Using Python

d. Self-Learning Topics:

Deeper knowledge in Python features Network devices and its capabilities Advantages of IoT implementations

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix										
	Theory Asses	sment (TA)**	Term W	ork Assessm	ent (TWA)	Lab Assessment (LA) [#]					
COs	Theory Assessment Assessment (ETA)				Learning It	Progressive Lab Assessment	End Laboratory Assessment				
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)				
	Sem Test			Projects	Activities*						
CO-1	10%	10%	20%		33%	10%	20%				
CO-2	15%	10%	20%		33%	15%	20%				
CO-3	30%	30%	20%		34%	15%	20%				
CO-4	20%	30%	20%	50%		30%	20%				
CO-5	25%	20%	20%	50%		30%	20%				
Total	30	70	20	20	10	20	30				
Marks				50		1					

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

The percentage given are approximate

In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End S

Suggested Specification Table for End Semester Theory Assessment: Specification table represents the
reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total Classroom	Relevant COs	Total Marks	ETA (Marks)			
	Instruction (CI) Hours	Number (s)		Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0 Python basics	5	CO1	7	2	2	3	
Unit-2.0 Python Advance	5	Co1, CO2	7	2	2	3	

Diplo	ma in Mechanical Engineering		Semes	ster- VI	
	Unit-3.0 Cloud features	14	CO3	21	

Unit-3.0 Cloud features	14	CO3	21	8	8	5
Unit-4.0 Networking and	14	CO4,	21	5	7	9
Application		C03				
Unit-5.0 IoT Applications	10	CO5,	14	3	6	5
		CO3 and				
		CO4				
Total Marks	48		70	20	25	25

Note:

Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant		PLA/ELA	
S.	Laboratory Practical Titles	COs	Perfo	rmance	Viva-
No.			PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
	Install given version of Python the computer system.	CO-1	70	20	10
	Prepare a python program using print() function and run it.	CO-1	60	30	10
	Access given value from the tuple	CO-1	60	30	10
	Print the given value of key from the dict.	CO-1	60	30	10
	Write a Python program to create an array of 5 integers and display the array items. Access individual element through indexes	CO-1	60	30	10
	Write a Python program which takes two digits m (row) and n (column) as input and generates a two-dimensional array.	CO-1	60	30	10
	Write a python program to check whether person is eligible for voting or not. (accept age from the user)	CO-1	60	30	10
	Write a python program to check whether the entered number is even or odd.	CO-1	60	30	10
	Write a python program to check whether entered number is divisible by another entered number.	CO-1	60	30	10
	Write a python program to display "Yes" is entered number is divisible by 5 otherwise display "No"	CO-1	60	30	10
	Prepare a python program which can print first 10 even and odd numbers using while statement	CO-2	60	30	10
	Write a python program which can print first 10 integers and its square using while/for loop.	CO-2	60	30	10
	Write a python program which can print sum of first 10 natural numbers using while/for loop.	CO-2	60	30	10
	Write a python program which can identify the prime number between the range given using while/for loop.	CO-2	60	30	10
	Consider a situation where you want to iterate over a string and want to print all the characters until a letter 'e' or 's' is encountered. It is specified that you have to do this using loop and only one loop is allowed to use.	CO-2	60	30	10
	Consider the situation when you need to write a program which prints the number from 1 to 10 and but not 6. It is specified that you have to do this using loop and only one loop is allowed to use.	CO-2	60	30	10

SBTE, Bihar

		Relevant		PLA/ELA	_
S.	Laboratory Practical Titles	COs		Performance	
No.		Number(s)	PRA*	PDA**	Voce
			(%)	(%)	(%)
	Create a Class with instance attributes	CO-2	60	30	10
	Create a Vehicle class without any variables and methods	CO-2	60	30	10
	Write a Python function to find the Max of three numbers.	CO-2	60	30	10
1.	Write a Python program to reverse a string.	CO-2	60	30	10
2.	Create a free cloud account	CO-3	70	20	10
3.	Store data on cloud and retrieve it.	CO-3	60	30	10
4.	Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool.	CO-4	70	20	10
5.	Connect the computers in Local Area Network	CO-4	70	20	10
6.	Connect 2 or more devices using Bluetooth	CO-4	70	20	10
7.	Connect 2 or more devices using infrared	CO-4	70	20	10
8.	Connect 2 more machine using m2m	CO-4	70	20	10
9.	Connect 2 or more different devices using access point	CO-4	70	20	10
10.	Connect 2 devices suing LPWAN (Smart Meter)	CO-4	70	20	10
11.	Connect 2 or more devices using RFID	CO-4	70	20	10
12.	Identify a problem and develop an app	CO-5	70	20	10
		1	I	1	ı I

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

K) Suggested Instructional/ Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1	Python software	Openly available as per instruction	As mentioned above list
2	Cables connecters and crimping tools	Cat 6e cable, RJ-45 connectors and Crimping Tool	
3	Bluetooth and infrared devices	Any mobile and wireless keyboard and mouse	
4	IoT free cloud	Free available	
5	Smart devices	Like meters, bulbs etc.	
6	Wireless access point	Wireless router or access point	-
7	Arduino development board	Arduino Uno and Arduino Nano.	-
8	Raspberry Pi	Raspberry Pi 4/ Raspberry Pi 3/ Raspberry Pi 2	-

R) Suggested Learning Resources:

Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1	Let Us Python	Kanetkar Yashavant	BPB Publications ISBN: 9789388511568, 9789388511568
2	IOT (Internet of things) and Its Application	P K Pandey	T Balaji Publication (1 January 2020) ISBN- 10: 8194136385 ISBN-13: 978-8194136385
3	Raspberry Pi Cookbook: Software and Hardware Problems and Solutions	Simon Monk	Shroff/O'Reilly; Third edition (4 October 2019) ISBN-10: 9352139267 ISBN-13: 978- 9352139262
4	Raspberry Pi Cookbook: Software and Hardware Problems and Solutions,	Simon Monk	Shroff/O'Reilly; Third edition (4 October 2019) ISBN-10: 9352139267 ISBN-13: 978- 9352139262
5	Cloud Computing: Concepts, Technology & Architecture	Erl	Pearson Education India; 1st edition (1 January 2014), ISBN-10: 9332535922 ISBN- 13: 978-9332535923
6	Fundamentals of Internet of Things	Eden Scott	States Academic Press 2023 ISBN 9781649649235
7	Internet of Things	Alaina Wilson	Murphy & Moore Publishing 2023 ISBN 9781649872731
8	Principles of Internet of Things	Hallie Parker	Larsen and Keller Education 2023 ISBN 9781641728312 (b)

(b) Online Educational Resources:

- 1. nptel.iitm.ac.in/courses/.../IIT.../lecture%2023%20and%2024.htm
- 2. en.wikipedia.org/wiki/Shear_and_moment_diagram
- 3. www.freestudy.co.uk/mech%20prin%20h2/stress.pdf

Diploma in Mechanical Engineering		Semester- VI	SBTE, Bihar
4.	www.engineers	tudent.co.uk/stress_and_strain.html	
5.	https://www.iit.	edu/arc/workshops/pdfs/Moment_Inertia	.pdf
6.	https://www.ve	ritis.com/blog/aws-vs-azure-vs-gcp-the-clo	oud-platform-of-your-choice/
7.	https://wiki.pytl	non.org/moin/TimeComplexity	
8.	www.engineers	tudent.co.uk/stress and strain.html	

www.engineerstudent.co.uk/stress_and_strain.html
 https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf
 Amini, P. (2014). Sulley: Pure Python fully automated and unattended fuzzing frame- work. https://github.com/OpenRCE/sulley

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested OER, before use by the students.

Diploma in Mechanical Engineering		Semester- VI	SBTE, Bihar
A)	Course Code	: 2400604D(T2400604D/P2400604D/S2400604D)	
B)	Course Title	: Drone Technology (Advanced)	
C)	Pre- requisite Course(s)	: Drone Technology (Basics)	
D)	Rationale	:	

D) Rationale

In previous semester, a course in drone technology broadly discussed about basic principles, functions and interface of different components and design simple drone structure. In order to understand the successive development of drones / UAVs in terms of their geometric structure, working methodology and navigation control etc., so it is important to study the advanced course on Drone Technology. This course includes the study of Static and dynamic force analysis on drone, advance flying features, navigation control, maintenance and advance applications of different types of drone.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- CO-1 Apply the concept of engineering mechanics for stability of drone.
- CO-2 Design the structure of drone using GPS module and thermal Image camera.
- CO-3 Operate drone using advance flight controller board.
- CO-4 Perform drone maintenance and assembly.
- CO-5 Use drone in advance applications like precision agriculture, security, IoT, etc.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO-1	PSO-2
(COs)	Basic and Problem Design/ Engineering Engineering Project Life Lon		Life Long						
	Discipline	Analysis	Development	Tools	Practices for Society,	Management	Learning		
	Specific		of Solutions		Sustainability and				
	Knowledge				Environment				
CO-1	3	-	-	-	-	-	-		
CO-2	2	2	-	3	3	-	-		
CO-3	2	2	3	3	-	-	-		
CO-4	3	-	-	3	-	-	-		
CO-5	-	2	2	-	-	3	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

CI:

G) Teaching & Learning Scheme:

Legend:

		Scheme of Study (Hours/Week)						
Course Course Code Title		Classroom Instruction (Cl)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (Cl+Ll+TW+SL)	Total Credits (C)	
		L	т					
2400604D	Drone Technology (Advanced)	03	-	04	02	09	06	

Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Assessment Scheme (Marks)						
Course Code		Theory Assessment (TA) Theory Assessment (TA) (TW)		Assessment Lab Ass		essment A)	WA+LA)	
	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2400604D	Drone Technology (Advanced)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

	Diploma	a in Mechanical Engineering
I	I)	Course Curriculum Detailing: This of

Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

Semester- VI

J) Theory Session Outcomes (TSOs) and Units: T2400604D

Majo	or Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
TSO 1a.	Draw free body diagram of quadcopter drone.	Unit-1.0 Engineering mechanics for Drone Technology	CO-1
TSO 1b. TSO 1c. TSO 1d. TSO 1e. TSO 1f.	Determine centroid of given drone structure. Determine center of gravity of different drone structure. Analyze different types of force acting drone system. Differentiate between static and dynamic force analysis. Explain how gyroscopic motion keeps drone balanced and hovering.	 1.1 Drone Mechanics Free body diagram of drone Method of finding resultant of force system Equilibrium of coplanar force system 1.2 Center of Gravity Center of gravity of solid bodies 1.3 Force analysis in drone Force analysis in drone Forces of flight Principle axes and rotation of aerial systems 1.4 Dynamics of machine Static and dynamic force analysis Gyroscopic motions 	
TSO 2a.	Describe properties and application of smart materials use in UAV frame.	Unit-2.0 Drone Frame and Components	CO-2
TSO 2b.	Calculate the diameter of the propeller for given drone frame size.	2.1 Drone frame designCalculation principle for drome frame sizes	
TSO 2c.	Determine size of quadcopter frame and diameter of propeller of drone	 Quadcopter frame design Smart materials for UAV frame 	
TSO 2d.	Describe working of GPS and its hardware interfacing.	 Green material uses in drone 2.2 Advance Drones component 	
TSO 2e.	Write steps to interface GPS module for drone navigation.	GPS, Interfacing of GPS hardwareThermal and chemical sensor	
TSO 2f.	Describe different RF blocks and antennas used in RF transmitter and receiver.	 Tilt and LiDAR sensor 3 RF transmitter and receiver RF blocks RF antennas 4 Micro-electromechanical systems (MEMS) based sensor 5 HD and thermal Image camera 	

Semester- VI

	echanical Engineering Se	mester- VI	SBTE, Bihar
Major Theory Session Outcomes (TSOs)		Units	Relevant COs Number (s)
TSO 3a. TSO 3b. TSO 3c. TSO 3d. TSO 3e. TSO 3f.	Identify features and specifications of FCB use in different application Explain ports of any given advance flight controller board. Write steps of software installation of flight controller board. Describe installation and calibration steps of radio telemetry with FCB. Write steps of calibration of accelerometer and ESC with FCB. Describe interfacing of GPS with FCB.	 Unit-3.0 Advance Flight Controller Board (FCB) 3.1 Specification and ports of FCB 3.2 Software for FCB Software installation 3.3 Radio Communication with FCB Installation of Radio Telemetry Radio Calibration with FCB 3.4 Calibration of accelerometer 3.5 Calibration of ESC 3.6 Interface of motor with FCB using ESC 3.7 GPS interface with FCB 3.8 Safety features of advance FCB 	CO-3
TSO 4a. TSO 4b. TSO 4c. TSO 4d.	Describe challenges comes in drone maintenance. Describe measuring devices and instrument use in drone maintenance. Describe measuring instrument used to measure electrical parameters in drone. Write sequence of steps use in assembling of drone.	 Unit-4.0 Maintenance and assembling of Drone 4.1 Need and scope of drone maintenance 4.2 Types of maintenance 4.3 Routine drone maintenance and its checklist Recording basic details Structural inspection Battery check Software/firmware 4.4 Types of measuring instrument use in drone maintenance 4.5 Measurement of different electrical parameters related with drone hardware 4.6 Assembly of drones Concept of interchangeability Principle of gauging and their applicability in drone assembly Parameters and profile measurements of standard propellers Concepts of drone assembly using 3D modeling 	CO-4
TSO 5a. TSO 5b. TSO 5c.	Describe function of autonomous drone using AI. Describe IoT enable UAV for surveillance and data gathering. Explain drone applications based on cost saving, enhanced efficiency and profitability aspects.	 Unit-5.0 Advance Drone Application 5.1 Application of AI in Drone Technology 5.2 IoT and Computer vision integrated Drone 5.3 Drone interface with smart-phone 5.4 Drone Applications in Military Precision Agriculture 	CO-5

Note: One major TSO may require more than one theory session/period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400604D

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1 Use the force of gravity to compute the centre of gravity for a given drone structure.	1.	Determine Centre of gravity of different done structure.	CO-1
LSO 2.1 Develop skills of observation and interpreting phenomenal changes on Drone model for stability and hovering.	2.	Demonstrate gyroscopic effect on a drone model	CO-1
 LSO 3.1 Draw various frame to be required in designing drone structure. LSO 3.2 Use Measuring instrument in designing drone frame. LSO 3.3 Choose suitable materials for making drone frame 	3.	Compare different types of airframe structure like quadcopter frame (plus shape, cross shape and H-shape), hexacopter frame (hexa + and hexa S).	CO-2, CO-4
LSO 4.1 Identify and measure the condition of sensors. LSO 4.2 Interface Tilt and LiDAR sensors in drone.	4.	Test Tilt and LiDAR sensors and their characteristics with Microcontroller based Flight controller board.	CO-2
LSO 5.1 Identify different component of GPS module LSO 5.2Measure and use signals from GPS module to determine latitude & longitude. LSO 5.3 Diagnose problems using appropriate instruments/tools related to GPS navigation.	5.	Demonstrate the interfacing of GPS module to drone navigation.	CO-2, CO-3
LSO 6.1 Measure characteristics of HD and thermal Image camera. LSO 6.2 Diagnose common problems related to HD and thermal Image camera.	6.	Test HD and thermal Image camera and their characteristics.	CO-2
LSO 7.1 Identify the characteristics of RF circuit blocks like amplifier, and filters. LSO 7.2 Identity different antennas used. LSO 7.3 Operate drone using RC transmitter and receiver.	7.	Identify, configure and operate 433MHz and 2.4 GHz RC transmitter and receiver.	CO-2
LSO 8.1 Test the different peripheral interconnections with FCB LSO 8.2 Troubleshoot advance Flight control board (FCB)	8.	Programming and configure of parameters in flight control board (FCB).	CO-3
LSO 9.1 Configure radio communication device to control drones. LSO 9.2 Operate drone using RC transmitter and receiver.	9.	Test and perform communication of advance Flight control board with RF transceiver.	CO-3, CO-2
LSO 10.1 Measure various parameters of GPS system LSO 10.2 Interface GPS system with flight controller board.	10.	Test and perform communication of Flight control board (FCB) with GPS	CO-3, CO-2
LSO 11.1 Configure HD and thermal image camera with drone. LSO 11.2 Demonstrate use of HD and thermal image camera with FCB	11.	Test and troubleshoot HD and thermal image camera with advance FCB in drone.	CO-3, CO-2
LSO 12.1 Measure voltage, current frequency using Digital Multimeter LSO 12.2 Measure peak to peak voltage, time period, and duty cycle using DSO and waveform generator. LSO 12.3 Measure unknown frequency and its level using spectrum analyzer.	12.	Measure various electric parameters in drone hardware	CO-4

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 13.1 Inspect drone as per the given checklist LSO 13.2 Diagnose drone problems after flying of 50 and 100hrs	13.	Perform preventive maintenance of drone components	CO-4
LSO 14.1 Perform dismantle process of drone. LSO 14.2 perform services need for operation LSO 14.3 Check and Install different parts of the drone system. LSO 14.4 Assemble drone component.	14.	Dismantle and service of different parts of drone system	CO-4

- L) Suggested Term Work and Self Learning: S2400604D Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Prepare maintenance report for small UAV.
- 2. Survey nearby electronics shop and Prepare report on types of drone frames and drone sensors available and its specification.
- 3. Prepare report of surveying & mapping of our institute using drone with HD and thermal image camera.
- 4. Prepare report on land and crops quality of nearby agriculture field using drone.
- 5. Prepare report on Identify and select different application drones like agriculture, Surveillance, Inspections and gathering Information for disaster management.
- 6. Download 5 videos on advance FCB of drone design. Watch them and write report on it.
- 7. Market survey on different types of FCB, its specification and specific application and prepare report.
- 8. Develop mission completion drone with the help of GPS based Advance FCB.

c. Other Activities:

- 1. Seminar Topics-Drone stability using gyroscopic motion, Quadcopter frame, Green material use in drone design, GPS based drones, types of HD and thermal Image camera, Safety features in advance drone, Drone Assembling, Military drone.
- 2. Visits: Visit nearby small industry, Drone institute facilities. Prepare report of visit with special comments of advance drone technology used, material used, cost of printed component.
- 3. Surveys: Survey nearby electronics shop and Prepare report of list of advance drone components and its specification.
- 4. Product Development
- 5. Software Development

d. Self-Learning Topics:

- 1. Different types Drones frame
- 2. Overview of GPS technology
- 3. Different types of HD and thermal Image camera
- 4. Safety features in Drone
- 5. Advance drone application

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix										
	Theory Asses	sment (TA)**	Term W	ork Assessm	nent (TWA)	Lab Assessment (LA) [#]					
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term V	Nork & Self Assessme	0	Progressive Lab Assessment	End Laboratory Assessment				
	Class/Mid Sem Test		Assignments	Micro Projects	Other Activities*	(PLA)	(ELA)				
CO-1	15%	15%	20%	20%	20%	25%	25%				
CO-2	20%	20%	20%	20%	20%	25%	25%				
CO-3	25%	25%	20%	20%	20%	25%	25%				
CO-4	25%	25%	20%	20%	20%	25%	25%				
CO-5	15%	15%	20%	20% 20% 20%			-				
Total	30	70	20	20	10	20	30				
Marks				50		1					

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

• The percentage given are approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Total	Relevant	Total	ETA (Marks)		
Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
8	CO-1	12	04	04	04
10	CO-2	14	04	04	06
12	CO-3	16	04	06	06
10	CO-4	16	04	06	06
8	CO-5	12	04	04	04
48		70	20	24	26
	Classroom Instruction (CI) Hours 8 10 12 10 8 8	Classroom Instruction (CI) HoursCOs Number (s)8CO-110CO-212CO-310CO-48CO-5	Classroom Instruction (CI) HoursCOs Number (s)Marks8CO-11210CO-21412CO-31610CO-4168CO-512	Classroom Instruction (CI) HoursCOs Number (s)MarksRemember (R)8CO-1120410CO-2140412CO-3160410CO-416048CO-51204	Classroom Instruction (CI) HoursCOs Number (s)MarksRemember (R)Understanding

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

S.		Relevant			
No.		COs	Perfor	mance	Viva-
_	Laboratory Practical Titles	Number(s)	PRA* (%)	PDA** (%)	Voce (%)
1.	Determine Centre of gravity of different done structure.	CO-1	50	40	10
2.	Demonstrate gyroscopic effect on a drone model	CO-1	40	50	10
3.	Compare different types of airframe structure like quadcopter frame (plus shape, cross shape and H-shape), hexacopter frame (hexa + and hexa S).	CO-2	50	40	10
4.	Test Tilt and LiDAR sensors and their characteristics with Microcontroller based Flight controller board.	CO-2	50	40	10
5.	Demonstrate the interfacing of GPS module to drone navigation.	CO-2, CO-3	50	40	10
6.	Test HD and thermal Image camera and their characteristics.	CO-2	50	40	10
7.	Identify, configure and operate 433MHz and 2.4 GHz RC transmitter and receiver.	CO-2	60	30	10
8.	Programming and configuration of parameters in flight control board (FCB).	CO-3	60	30	10
9.	Test and perform communication of advance Flight control board with RF transceiver.	CO-3, CO-2	60	30	10
10.	Test and perform communication of Flight control board (FCB) with GPS	CO-3, CO-2	60	30	10
11.	Test and troubleshoot HD and thermal image camera with advance FCB in drone.	CO-3, CO-2	60	30	10
12.	Measure various electric parameters in drone hardware	CO-4	40	50	10
13.	Perform preventive maintenance of drone components	CO-4	60	30	10
14.	Dismantle and service of different parts of drone system	CO-4	60	30	10

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc. **Diploma in Mechanical Engineering**

Q)

List of Major Laboratory Equipment, Tools and Software:

S. Name of Equipment, Tools and Broad Relevant **Experiment/Practical** No. Software **Specifications** Number Tricopter/Quadcopter/Hexacopter 1. **Drone Frame** 1-15 15 X 5.5 CW/Others Propellers 1-15 2. GPS module M8N Series 1-15 3. 4. Drone Camera 15-20 Megapixel 1-15 Camera Gimble 3 Axis feature, 360 Degree movement 1-15 5. **Tilt Sensor** 8-30 volt 1-15 6. 7. LiDER sensor Range 75m to 200m 1-15 Lithium Polymer Battery,8000 to 10000 mAh Battery 1-15 8. BLDC, 370kv 9. Motor 1-15 Electronic speed Controller (ESC) 40 Amp 1-15 10. Flight Controller Board CC3D/Pixhawk/Others 1-15 11. Transmitter and Receiver for radio 10 Channels and more, 2.4 GHz & 5.8 GHz 12. 1-15 signal 13. Embedded system for AI application Open Source Jetson Baseboard /Others 1-15 on UAV

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author (s)	Publisher and Edition with ISBN
No.			
1.	Make: DIY Drone and Quadcopter Projects: A Collection of Drone-Based Essays, Tutorials, and Projects	Editors of Make	Shroff/Maker Media, First edition 2016, ISBN-978-9352133994
2.	Make: Getting Started with Drones: Build and Customize Your Own Quadcopter	Terry Kilby & Belinda Kilby	Shroff/Maker Media, First edition 2016, ISBN-978-9352133147
3.	Agricultural Drones: A Peaceful Pursuit	K R Krishna	Apple Academic Press,1st edition 2018, ISBN-978-1771885959
4.	Building Multicopter Video Drones: Build and fly multicopter drones to gather breathtaking video footage	Ty Audronis	Packt Publishing Limited; Illustrated edition,2014, ISBN-978-1782175438
5.	The Complete Guide to Drones	Adam Juniper	Ilex Press, Extended 2nd Edition,2018 ISBN-9781781575383
6.	Unmanned Aircraft Systems - UAVS Design, Development and Deployment (Aerospace Series)	R Austin	John Wiley & Sons Inc, 1st edition, 2010, ISBN-978-0470058190

Diplom	a in Mechanical Engineering Se	mester- VI	SBTE, Bihar
7.	Drone Technology	Miranda Hall	NY Research Press 2023 ISBN 9781632389574
8.	Introduction to UAV Systems	Rupert Baker	Willford Press 2023 ISBN 9781682860890
9.	Theory, Design, and Applications of Unmanned Aerial Vehicles	Tyler Wood	Larsen and Keller Education 2023 ISBN 9781641728338

(b) Online Educational Resources:

- 1. https://archive.nptel.ac.in/courses/101/104/101104083/
- 2. https://onlinecourses.nptel.ac.in/noc21_ae14/preview
- 3. https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
- 4. https://fusion.engineering/
- 5. https://robocraze.com/blogs/post/best-flight-controller-for-drone
- 6. https://www.youtube.com/watch?v=lrkFG7GilPQ
- 7. https://www.youtube.com/watch?v=KjG6FKCNCbM
- 8. https://ardupilot.org/
- 9. https://px4.io/

(c) Others:

- 1. Development of an Autonomous IoT-Based Drone for Campus Security, Abdelrahman Mahmoud Gaber, Rozeha A. Rashid, Nazri Nasir, Ruzairi Abdul Rahim, M. Adib Sarijari, A. Shahidan Abdullah, Omar A. Aziz, Siti Zaleha A. Hamid, Samura Ali,2021
- 2. IoT based UAV platform for emergency services; S. K. Datta, J. L. Dugelay, & C. Bonnet, 2018
- 3. Development of an Autonomous Drone for Surveillance Application; M. A. Dinesh, S. Santhosh Kumar, J. Sanath, K. N. Akarsh & K. M. Manoj Gowda,2018
- 4. Autonomous cloud-based drone system for disaster response and mitigation; C. Alex & A. Vijaychandra,2016
- 5. https://www.geeetech.com/Documents/CC3D%20flight%20control%20board.pdf
- 6. https://www.bhphotovideo.com/lit_files/201146.pdf
- 7. http://tricopter.hu/docs/cc3d_manual.pdf

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

Diploma in Mechanical Engineering		Semester- VI	SBTE, Bihar
A)	Course Code	: 2400604E(T2400604E/P2400604E/S2400604E)	
B)	Course Title	: 3D Printing and Design (Advanced)	
C)	Pre- requisite Course(s)	: 3D Printing and Design (Basic)	

:

D) Rationale

This advanced course on 3D Printing tries to develop understanding of the process of making real complex objects from digital models in the students using various 3D printing processes and materials (Plastics, Ceramics and Metals). It also covers the post processing required and details about various printing process and parameters to make a quality 3D printed component. This course can only be taken up after completing 3D Printing and Design (Basic) course offered in previous semester.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Select newer 3D Printing material for various applications.
- **CO-2** Use solid based 3D Printing processes to develop products.
- **CO-3** Use liquid-based 3D Printing processes to develop products.
- **CO-4** Use powder-based 3D Printing processes to develop products.
- **CO-5** Apply post processing techniques and quality checks on 3D printed components.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO-1	PSO-2
(COs)	Basic and	Problem	Design/	Engineering	Engineering	Project	Life		
	Discipline	Analysis	Development	Tools	Practices for	Management	Long		
	Specific		of Solutions		Society,		Learning		
	Knowledge				Sustainability and				
					Environment				
CO-1	3	-	-	-	2	-	2		
CO-2	3	-	2	2	-	-	2		
CO-3	3	-	2	2	-	-	2		
CO-4	3	-	2	2	-	-	2		
CO-5	3	2	-	3	2	-	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Legend:	Course	Course		Scheme of Study (Hours/Week)							
	Course Code	Title		room Iction 21) T	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Total Hours Credits (CI+LI+TW+SL) (C)		(
	2400604E	3D Printing and Design (Advanced)	03	-	04	02	09	06			

Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

- TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)
- SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.
- C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)
- **Note:** TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			A	ssessment S	cheme (Mar	·ks)		
		Theory Ass (TA		Self-Le Asses	Work & earning sment VA)	Lab Asse (L		(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T/
2400604E	3D Printing and Design (Advanced)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)
 PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes process and product assessment using rating scales and rubits)
 Twas a self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

• ETA & ELA are to be carried out at the end of the term/ semester.

- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self-Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400604E

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1a.	Explain various forms of 3D printing raw material.	Unit-1.0 3D Printing Materials	CO1
	Select material for the given popular 3D printing processes with justification. Select various Polymer based 3D printing	 Various forms of 3D printing raw material- Liquid, Solid, Wire, Powder. Popular FDM, SLA, SLS, Binder Jetting, Material Jetting and Direct Energy deposition 3D 	
TSO 1d.	raw materials with justification. Explain procedure of Powder preparation for the given 3D printing material.	 printing materials. 1.3 Polymers, Metals, Non-Metals, Ceramics. 1.4 Polymers and their properties. 	
TSO 1e.	Explain properties of the given Metal/Ceramics 3D printing material.	1.5 Powder Preparation and their desired	
TSO 1f.	Choose suitable 3D printing material on the basis of Performance Requirements and Material Properties.	properties. 1.6 Choosing the Right 3D Printing Material on the basis of Performance Requirements and Material Properties.	
TSO 2a.	Explain working of a typical FDM based 3D Printer.	Unit-2.0 Solid based 3D Printing Processes	CO1, CO2
TSO 2b.	Justify use of FDM based 3D printing process and material for the given component.	2.1 Basic principle and working of fused deposition modeling (FDM) process.2.2 Liquefaction, solidification and bonding.	
TSO 2c.	Explain the Laminated Object Manufacturing process.	2.3 Laminated Object Manufacturing process.2.4 Cost estimation of FDM 3D printed component.	
TSO 2d.	Estimate the cost and time of the given FDM based 3D printed component.		
TSO 3a.	Explain the phenomenon of Photo Polymerization.	Unit-3.0 Liquid based 3D Printing Processes	CO1, CO3
TSO 3b.	Explain the working of a typical Stereo Lithography based 3D Printer.	3.1 Photo polymerization.3.2 Principle and working of stereo lithography apparatus.	
TSO 3c.	Explain procedure of 3D Scanning of the given component.	3.3 SLA based 3D printing processes.	
TSO 3d.	Justify use of SLA based 3D printing process	3.4 SLA based 3D printing process materials.	
TSO 3e.	and material for the given component. Estimate the cost and time of the given SLA	3.5 Scanning techniques.3.6 Curing processes.	
TSO 3f.	based 3D printed component. Apply Curing process to SLA based 3D printed component.	3.7 Cost estimation of SLA 3D printed component.	
TSO 4a.	Explain powder fusion mechanism.	Unit-4.0 Powder based 3D Printing Processes	CO1, CO4
	Explain working of a typical SLA based 3D Printer.	4.1 Powder fusion mechanism.	
TSO 4c.	Justify use of SLA based 3D printing process and material for the given component.	4.2 Principle and working of Selective Laser Sintering (SLS) process.	
TSO 4d.	Explain Net shape process.	4.3 SLS based 3D printers.	
TSO 4e.	Explain Binder Jet 3D printing process.	4.4 Laser Engineering Net Shaping process.	
TSO 4f.	Justify use of Binder Jet 3D printing process	4.5 Electron Beam Melting.	
TSO 4g.	and material for the given component. Estimate the cost and time of the given SLS based 3D printed component.	4.6 Binder Jet 3D Printing.4.7 Materials and Process parameters for SLS based 3D printing processes.	

Ma	jor Theory Session Outcomes (TSOs)		Units	Relevant COs Number(s)
		4.8	Cost estimation of SLS based 3D printed component.	
	Justify the need of post processing in the given 3D printed component. List the various post processing techniques.	Uni 5.1	t-5.0 Post Processing and Quality Need of post processing: Functional and Aesthetic reasons.	CO1, CO2, CO3, CO4, CO5
	List the steps to perform post processing. Explain the given Cleaning related post processing approach for 3D printed component.	5.2 5.3	Steps of Post Processing: Cleaning/Support removal, Fixing, Curing or hardening, Surface finishing, Colouring. Cleaning: Support Removal (FDM and Material	
TSO 5e.	Explain the given Surface finishing related post processing approach for 3D printed component.	5.4	Jetting); Powder Removal (SLS and Powder Bed Fusion); Washing (SLA and Photo polymerisation). Fixing: Filling, Gluing, Welding.	
TSO 5f.	Apply simple inspection and testing techniques on the given 3D printed component.	5.5	Surface finishing: Sanding, Polishing, Tumbling, Hydro dipping, Epoxy coating, Electro Plating, Vapour smoothing-Acetone treatment.	
TSO 5g.	Identify the type of defect(s) in the given 3D printed component.	5.6 5.7 5.8	Colouring, Coating, Priming and Painting. Inspection and testing: Digital, Visual, Physical. Defects and their causes.	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400604E

Pract	ical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1.	Use the available 3D printing software.	1.	Develop the assigned digital single complex	CO1, CO2
LSO 1.2.	Select printing process parameters based on the type/make of Printer and raw material		component using FDM based 3D Printer and available material.	
LSO 1.3.	Set printing process parameters.			
LSO 1.4.	Produce a complex component using available FDM Printer.			
LSO 2.1.	Use the available 3D printing software.	2.	Develop the assigned digital single complex	CO1, CO3
LSO 2.2.	Select printing process parameters based on the type/make of Printer and raw material		component using SLA based 3D Printer and available material.	
LSO 2.3.	Set printing process parameters.			
LSO 2.4.	Produce a complex component using available SLA Printer.			
LSO 2.5.	Perform curing of the SLA based 3D printed component.			
LSO 3.1.	Use the available 3D printing software.	3.	Develop the assigned digital single complex	CO1, CO4
LSO 3.2.	Select printing process parameters based on the type/make of Printer and raw material		component using SLS based 3D Printer and available material.	
LSO 3.3.	Set printing process parameters.			
LSO 3.4.	Produce a complex component using available SLS Printer.			

SBTE, Bihar

Pract	ical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 4.1.	Use the available 3D printing software.	4.	Develop same digital single complex	CO1, CO2,
LSO 4.2.	Select printing process parameters based on the type/make of Printer and raw material		component using FDM, SLA and SLS based 3D Printers and compare the printed components on the basis of Cost, Time, Surface finish,	CO3, CO4
LSO 4.3.	Set printing process parameters.		Strength.	
LSO 4.4.	Produce a complex component using available FDM, SLA and SLS Printer.			
LSO 4.5.	Perform Cost, Time, Surface finish and Strength estimations related to 3D printed components.			
LSO 5.1.	Use the available 3D printing software.	5.	Print one digital assembly on SLA/SLS based	CO2/CO3/
LSO 5.2.	Select printing process parameters based on the type/make of Printer and raw material		3D Printer.	CO4
LSO 5.3.	Select appropriate tolerance, fit and printing process parameters.			
LSO 5.4.	Produce an assembly using available SLA/SLS Printer.			
LSO 6.1.	Use of available 3D scanner.	6.	Scan the given real complex component and	CO2, CO3,
LSO 6.2.	Develop 3D digital model using scanning approach.		print it using FDM/SLA/SLS based 3D Printer.	CO4
LSO 6.3.	Use the available 3D printing software.			
LSO 6.4.	Produce a complex component using available SLA Printer.			
LSO 7.1.	Identify tools/devices/chemicals for post processing	7.	Apply post processing techniques on the 3D printed component of experiment number 1	CO5
LSO 7.2.	Perform post processing operations on printed component.		and/or 2 and/or 3.	
LSO 8.1.	Identify tools/devices/techniques for inspection and testing.	8.	Check the soundness of the 3D printed component of experiment number 1 and/or 2	CO5
LSO 8.2.	Identify the defects in 3D printed components		and/or 3 using available devices/techniques.	
LSO 8.3.	Apply remedial measures to bring soundness in the defective 3D printed component.			

- L) Suggested Term Work and Self Learning: S2400604E Some sample suggested assignments, micro project and other activities are mentioned here for reference
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Prepare a list of solid, liquid and powder form 3D printing raw materials stating their cost, colour opacity, flexibility and weight per unit volume.
- 2. Download 5 videos of 3D printing of different components using FDM, SLA and SLS each. Watch them and write a report to detail out the steps involved, 3D Printer used, 3D Printing software used, material used, complexity involved, printing time, post processing steps used.
- 3. Prepare a report on post processing steps and techniques used for 3D printed components using FDM, SLA, SLS.
- 4. Prepare a report to compare FDM, SLA, SLS based 3D printing process on the basis of cost, surface finish, printer setting time, printing time and post processing time and cost involved.
- 5. Download 5 videos of 3D printing processes **other than** FDM, SLA and SLS. Watch them and write a report to detail out the steps involved, 3D Printer used, 3D Printing software used, material used, complexity involved, printing time, post processing steps used.
- 6. Download 1 video related to inspection and testing of 3D printed components using different techniques like Visual inspection, Scanning Electron Microscopy (SEM), CT system, X-ray, Penetration testing, Infrared thermography, Leak or pressure testing for complex structures, Eddy current, Mechanical property inspection to measure tensile, yield, shear, fatigue, hardness, density, impact strength, Metallography (Microstructure testing). Watch them and write a report to detail out the steps involved and equipment used.

Other Activities:

- 1. Seminar Topics:
 - Newer 3D printing raw materials
 - Direct energy 3D printing process
 - Material jetting 3D printing process
 - Micro 3D printing process
 - Metal and Ceramic 3D printing
 - 3D printing of Jewelry
 - 3D printing of Bio implants
 - Printing of flexible plastic components
- 2. Visits: Visit nearby tool room/industry with 3D Printing facilities. Prepare report of visit with special comments of 3D printing technique used, material used, single component/batch production/mass production and cost of printed component.
- 3. Self-Learning Topics:
 - 3D printing of transparent, soft and flexible plastic components
 - 3D printing of metal components
 - 3D printing of ceramic components
 - 3D scanning process.
 - Chemical post processing techniques
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Theory Asses	sment (TA)**	Term W	ork Assessm	nent (TWA)	Lab Assess	ment (LA) [#]
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Work & Self Learning Assessment		-	Progressive Lab Assessment	End Laboratory Assessment
	Class/Mid Sem Test		Assignments	Micro Projects	Other Activities*	(PLA)	(ELA)
CO-1	15%	15%	15%	-	-	10%	20%

Semester- VI

Marks			50				
Total	30	70	20	20	10	20	30
CO-5	25%	25%	25%	25%	25%	15%	20%
CO-4	20%	20%	20%	25%	25%	25%	20%
CO-3	20%	20%	20%	25%	25%	25%	20%
CO-2	20%	20%	20%	25%	25%	25%	20%

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 3D Printing Materials	6	CO1	10	3	2	5
Unit-2.0 Solid based 3D Printing Processes	10	CO1, CO2	14	4	5	5
Unit-3.0 Liquid based 3D Printing Processes	10	CO1, CO3	14	4	5	5
Unit-4.0 Powder based 3D Printing Processes	10	CO1, CO4	14	4	5	5
Unit-5.0 Post Processing and Quality	12	CO1, CO2, CO3, CO4, CO5	18	5	5	8
Total	48	-	70	20	22	28

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant	PLA/ELA		
S.	Laboratory Practical Titles	COs	Performance		Viva-
No.		Number(s)	PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
1.	Develop the assigned digital single complex component using	CO1, CO2	30	60	10
	FDM based 3D Printer and available material.				
2.	Develop the assigned digital single complex component using	CO1, CO3	30	60	10
	SLA based 3D Printer and available material.				
3.	Develop the assigned digital single complex component using	CO1, CO4	30	60	10
	SLS based 3D Printer and available material.				
4.	Develop same digital single complex component using FDM,	CO1, CO2,	30	60	10
	SLA and SLS based 3D Printers and compare the printed	CO3, CO4			
	components on the basis of Cost, Time, Surface finish, Strength.				
5.	Print one assembly on SLA/SLS based 3D Printer.	CO2/CO3/	30	60	10
		CO4			

		Delevent	PLA/ELA		
S.	Laboratory Practical Titles	Relevant COs	Performance		Viva-
No.		Number(s)	PRA* (%)	PDA** (%)	Voce (%)
6.	Scan the given real complex component and print it using FDM/SLA/SLS based 3D Printer.	CO2, CO3, CO4	40	50	10
7.	Apply post processing techniques on the 3D printed component of experiment number 1 and/or 2 and/or 3.	CO5	40	50	10
8.	Check the soundness of the 3D printed component of experiment number 1 and/or 2 and/or 3 using available devices/techniques.	CO5	40	50	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

- **Note:** This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.
- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S.	Name of Equipment,	Broad	Relevant
No.	Tools and Software	Specifications	Experiment/Practical Number
1.	High end computers	Processor Intel Core i7 with Open GL Graphics Card, RAM 32 GB, DDR3/DDR4, HDD 500 GB, Graphics Card NVIDIA OpenGL 4 GB, OS Windows 10	All
2.	Parametric Computer Aided Design software	CATIA/Solid works/NX/Creo OR Available with CoE	1 to 5
3.	FDM based 3D printer	Fused Deposition Modelling system with complete accessories; Build Volume-300 x 300 x 300mm or Higher; Layer Thickness-0.1 – 0.4 OR Available with CoE	1,4,5,6
4.	SLA based 3D printer	Printing Technology: SLA, 145 x 145 x 175mm build volume, Common layer thickness 25–100 μ m, Dimensional Accuracy ± 0.5% (lower limit: ±0.10 mm), cure time of only 1-3s per layer, Material type: UV-sensitive liquid resin, Curing unit.	2,4,5,6
5.	SLS based 3D printer	Printing Technology: SLS., Build Volume: 130 x 130 x 180 mm, Recommended min. wall thickness: 0.8 mm, Powder Diameter: 60 Microns, Material Type: Nylon, TPU, Light Source: Laser Diode	3,4,5,6
6.	3D Printing Material	ABS/PLA, Resin based Photosensitive material, Polymer/metal/ceramic powder OR Available with CoE	1,2,3,4,5,6
7.	3D Printing software	Latest version of software like: Cura/PrusaSlicer/ideaMaker/Meshmixer/MeshLab OR Available with CoE	1 to 6
8.	3D Scanner and Processing software	Handheld 3D scanner, Accuracy up to 0.1 mm, Resolution up to 0.2 mm, Real time onscreen 3D model projection and processing, Wireless technology with an inbuilt touch screen and battery, Extended field of view for capturing both large and small objects, Processing Software OR Available with CoE	6
9.	Post processing equipments and tools	Deburring tools (tool handle & deburring blades), Electronic Digital Caliper, Cleaning Needles, Art knife set, Long nose pliers, Flush cutters, Wire brush, Nozzle cleaning kit, Tube cutter, Print	7

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
		removal spatula, Needle file, Cutting mat, Glue stick, Wire stripper, Chemicals, Etching agents etc.	
10.	Inspection and Testing devices	 Visual inspection, Devices related to: Scanning electron microscopy (SEM), CT system, X-ray, Penetration testing, Infrared thermography, Leak or pressure testing for complex structures, Eddy current, Mechanical property inspection to measure tensile, yield, shear, fatigue, hardness, density, impact strenght Metallography (Microstructure testing) 	8

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing	Lan Gibson, David W. Rosen, Brent Stucker	Springer, 2010 ISBN: 9781493921133
2.	Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing	Andreas Gebhardt,	Hanser Publisher, 2011 ISBN: 156990507X, 9781569905074
3.	3D Printing and Design	Sabrie Soloman	Khanna Publishing House, Delhi ISBN: 9789386173768
4.	3D Printing and Rapid Prototyping- Principles and Applications	C.K. Chua, Kah Fai Leong	World Scientific, 2017 ISBN: 9789813146754
5.	Getting Started with 3D Printing: A Hands-on Guide to the Hardware, Software, and Services Behind the New Manufacturing Revolution	Liza Wallach Kloski, Nick Kloski	Make Community, LLC; 2nd edition, 2021 ISBN: 9781680450200
6.	Laser-Induced Materials and Processes for Rapid Prototyping	L. Lu, J. Fuh, Y.S. Wong	Kulwer Academic Press, 2001 ISBN: 9781461514695
7.	3D Printing: A Practical Guide	Clay Martin	Larsen and Keller Education 2023 ISBN 9781641728323
8.	Fundamentals of 3D Printing	Elizah Brooks	Clanrye International 2023 ISBN 9781647290943
9.	Principles of 3D Printing	Brady Hunter	NY Research Press 2023 ISBN 9781632389549

(b) Online Educational Resources:

- 1. https://onlinecourses.nptel.ac.in/noc21_me115/preview
- 2. https://archive.nptel.ac.in/courses/112/104/112104265/
- 3. https://bigrep.com/post-processing/
- 4. https://www.mdpi.com/2227-7080/9/3/61
- 5. https://all3dp.com/2/best-3d-printing-books/
- 6. https://www.youtube.com/watch?v=TQY2IF-sFal
- 7. https://www.youtube.com/watch?v=Oz0PoS5LPxg
- 8. <u>https://www.youtube.com/watch?v=6ejjh0GdyDc</u>
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. 3D Printing Projects DK Children; Illustrated edition, 2017
- 2. The 3D Printing Handbook: Technologies, design and applications Ben Redwood, Filemon Schöffer, Brian Garret, 3D Hubs; 1st edition, 2017
- 3. https://www.improprecision.com/inspection-method-for-3d-printed-parts/
- 4. 3D Printer Users' Guide
- 5. 3D Printer Material Handbook
- 6. Lab Manuals

Diploma in Mechanical Engineering		Semester- VI	SBTE, Bihar	
A)	Course Code	: 2400604F(T2400604F/P2400604F/S2400604F)		
B)	Course Title	: Industrial Automation (Advanced)		
C)	Pre- requisite Course(s)	: Industrial automation (Basic), Digital		
		Electronics and Basic programming skills		

D) Rationale

This course on Advanced industrial automation offers students a hands-on approach to implement industrial control using modern controllers like Programmable Logic Controller (PLC), Distributed Control System (DCS)Supervisory Control and Data Acquisition (SCADA). Students will learn to identify and connect field inputs and outputs; communicate with, and program microprocessor-based controllers. Students will also connect, communicate with, and develop displays for computer-based operator interfaces. Process manufacturers typically employ Distributed Control System (DCS) Supervisory Control and Data Acquisition (SCADA) technologies to monitor and control the operations in their facilities. DCS and SCADA systems are now doing much more than simply monitoring and controlling. The course will enable the students to use of basic instructions and addressing, advanced PLC instructions in Ladder Logic and to identify and troubleshoot the faults in PLC system and do PLC maintenance. This course also introduces the students to industrial automation communications, PLC maintenance and troubleshooting also to become a successful automation engineer.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1.** Apply the principles of communication for industrial automation.
- **CO-2.** Test the output of the PLC ladder logic programs for the given application
- CO-3. Maintain PLC systems
- **CO-4.** Use SCADA for supervisory control and for acquiring data from the field.
- **CO-5.** Develop simple automation systems

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Outcomes (POs)								
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineeri ngTools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Managem ent	PO-7 Life Long Learning	PSO-1	PSO-2	
CO-1	3	2	2	2	2	-	2			
CO-2	3	3	3	3	-	-	2			
CO-3	3	3	3	3	2	2	2			
CO-4	3	2	2	2	2	2	2			
CO-5	3	2	2	3	2	2	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Legend: CI:

		Scheme of Study (Hours/Week)							
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (Cl+Ll+TW+SL)	Total Credits (C)		
		L	Т						
2400604F	Industrial								
	Automation (Advanced)	03	-	04	02	09	06		

Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances/ problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, Online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

				Assessment	Scheme (Mar	ks)		
ω		Theory Ass (TA		Learning	ork & Self- Assessment NA)	Lab Asse (L		WA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2400604F	Industrial Automation (Advanced)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self -learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self -learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400604F

Major	Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO.1a TSO.1b TSO.1c TSO.1d TSO.1e TSO.1f	Describe how does a PLC communicate?Differentiate between parallel and series communicationDescribe the data transfer mechanism for the given communication protocols.Describe the given communication protocol used in PLC communication.Summarize PLC to PLC communication procedure Describe the common procedure to interface the PLC with other given hardware.	Unit-1.0 Industrial automation communication and Interfacing 1.1 Analog and Digital Communications on Plant Floors 1.2 Introduction to Industrial Networking 1.3 RS232-422-485 standards for data communication 1.4 Industrial Ethernet 1.5 Concept of Fieldbus 1.6 MODBUS protocol 1.7 Highway Addressable Remote Transducer (HART) Protocol 1.8 Interfacing of Programmable Logic Controller with other hardware	CO-1
TSO.2a	Specify the proper I/O addressing format of the given PLC.	Unit-2.0 PLC Programming	CO-2
TSO.2b	Explain the use of different relay type instructions for the given operation.	2.1 PLC I/O addressing in ladder logic2.2 PLC programming instructions using ladder logic and	
TSO.2c	Describe how a program is executed with the help of Program Scan cycle	relay type instructions 2.3 Program Scan cycle 2.4 PLC arithmetic functions - Addition, subtraction,	
TSO.2d	Develop ladder logic program using arithmetic functions to perform the given operation.	multiplication, division instructions, increment decrement, trigonometric 2.5 PLC logical functions - AND, OR, XOR, NOT functions,	
TSO.2e	Develop ladder logic programs using logical and comparison instructions to perform the given operation	PLC compare and convert functions.2.6 Programming Timer –Addressing a timer block, status bits, On delay, Off Delay and reset/retentive timer	
TSO.2f	Develop ladder logic programs using on delay, off delay and reset/retentive timer in a given PLC to create a delay in operation.	 2.7 Programming Counter- Addressing a counter block, status bits, Up and Down counter, up-down counter, counter examples, register basics 2.8 Develop ladder logic for various simple applications 	
TSO.2g	Develop ladder logic programs using Up, Down and UP-down counter in a given PLC to count the number of products	2.8 Develop ladder logic for various simple applications	
TSO.3a	Describe Requirements for PLC	Unit-3.0 Installation and maintenance of PLC systems	CO-3
TSO.3b	enclosure. Describe Proper grounding techniques.	3.1 PLC enclosure, grounding requirements, noise generating inductive devices, leaky inputs and outputs,	
TSO.3c	Describe noise reduction Techniques.	techniques to reduce electrical noise and leakage.	

Maior	Theory Session Outcomes (TSOs)	Units	Relevant
major		0	COs
			Number(s)
TSO.3e TSO.3f TSO.3g	Explain preventive maintenance procedure associated with PLC system to reduce environmental impact Identify faults in the given PLC system Explain the procedure for Troubleshooting PLC system Prepare preventive maintenance plan for the PLC system Use safety equipment's. Follow safe practices	 3.2 Introduction to PLC Trouble shooting and maintenance, trouble shooting of hardware and software. 3.3 Diagnostic LED Indicators in PLCs 3.4 Common problems Internal problems – Check for PLC Power Supply, Emergency Push Button, Power Supply Failure, Battery Failure, Electrical Noise Interference, Verify the PLC Program with the Master Program, Corrupted PLC Memory External problems - Power failure, faulty grounding and electrical noise interference (RFI or EMI), Status of the Output Modules and their associated Circuitry, Status of the Input Modules and their associated Circuitry, Field Input and Output Devices, Communication Issues. Environmental Conditions. Check for humidity, temperature, vibration, and noise-level limits specified by its manufacturer 3.5 Troubleshooting of Specific Components of the PLC System Power Supply Troubleshooting I/O Modules Troubleshooting Troubleshooting PLC Program Errors Troubleshooting the Working Environment of a PLC Replacement of CPU 3.6 PLC trouble shooting flowchart 3.7 PLC maintenance – PLC maintenance checklist, preventive maintenance procedure, maintenance plan 	Number(s)
		for the PLC system. 3.8 Safety procedure and safety equipment's.	
TSO.4.a	Describe the function of given element of a SCADA system.	Unit-4.0 SCADA and DCS	CO-3
	Interface the given PLC with SCADA system using the given Open Platform Communications (OPC). Describe the steps to develop a	 4.1 Introduction, need, benefits and typical applications of SCADA and DCS 4.2 SCADA Architecture - Remote Terminal Units (RTUs), Master Terminal Units, Various SCADA editors, Communication protocols for SCADA 4.2 Communication protocols for SCADA 	
TSO.4.d	simple SCADA screen for the given industrial application. Describe the procedure to maintain the SCADA based PLC system for the given application.	 4.3 Comparison of SCADA with DCS 4.4 Interfacing SCADA system with PLC- Typical connection diagram, Object Linking and Embedding for Process Control (OPC) architecture 4.5 Creating SCADA Screen HMI for simple object, Steps for linking SCADA object (defining Tags and items, creating trends etc.,) with PLC ladder program using OPC, configuring simple applications using SCADA: Traffic light control, water distribution, pipeline control, Power generation, transmission and distribution etc. 4.6 Procedure to maintain the SCADA based PLC system. 	
TSO.5a	Identify different components used for automation in the given system	Unit-5.0 Applications of Industrial Automation	CO-5
	Select automation components for a given situation	5.1 Manufacturing- Industrial Robots- welding robots, pick and place robots, Cabot's, Machine monitoring	
150.50	In the given manufacturing or service industry Identify the areas where automation is possible.	system, supply chain, Automated assembly system, Flexible Automation and programmable Automation.	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO.5d Prepare plan for sustainable automation as per the requirement.	 5.2 Health Care- microscopic robots for medical diagnosis, automated medication dispensing devices, AESOP, ZEUS, RP_7(remote presence 7th generation), DaVinci 5.3 Defense- guided rockets and missiles, counter measures, UAV drones, launcher, radar antenna, 	
	 engagement control system 5.4 Automobile –Break monitoring system, Vehicle tracking system, Rear-view alarm to detect obstacles behind, Four-wheel drive, Traction control system, Dynamic steering response, Anti-lock braking system (ABS) Adaptive cruise control, Adaptive headlamps, Intelligent Parking Assist System, Driverless/Autonomous Cars 	
	 5.5 Agriculture- harvesters, irrigation systems, plowing machines, self-driving tractors, grain yield sensor 5.6 Mining- Mine planning system, mine picture compilation, mine control system, seismic imagining, laser imaging, Rig control system, automated drilling, automated exploration, automated truck 	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400604F

Practic	cal/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1	Data communication from PLC to PC and vice versa	1.	Transfer the control data from PLC to PC and vice versa	CO1
LSO 1.2	Establish Communication channels between PLC s.	2.	Transfer the control data from PLC to PLC	CO1
LSO 1.3	Transfer data from sensors to PLC and from PLC to PC.	3.	Transfer the sensor data from sensor to PLC to PLC and PC	CO1
LSO 1.4	Interface the given PLC with a PC or a Laptop	4.	Interface the given PLC with a PC or a Laptop	CO1
LSO 2.1	Identify Different parts and front panel indicators of a PLC	5.	Identify the various parts and front panel status indicators of the given PLC.	CO2
LSO 2.2	Develop Ladder logic program for different arithmetic operations	6.	Develop/Execute ladder logic program for different arithmetic operations such as Addition, subtraction, multiplication, division increment, decrement, trigonometric in a given PLC	CO2
LSO 2.3	Develop Ladder logic program for different logical operations	7.	Develop/Execute ladder logic program for logical operations such as AND, OR, NOT, NAND, NOR, X-OR, X-NOR gate along with truth table	CO2
LSO 2.4	Program Latch and Unlatch circuit in a PLC for motor operation	8.	Program the given PLC to start run and stop the given motor using latch circuit	CO2
LSO 2.5	Create delay in operation using on delay, off delay and retentive timer function in a given PLC.	9.	Test the functionality of on delay, off delay and retentive timer for its correct operation in a given PLC.	CO2
LSO 2.6	Count the number of objects/events using Up counter, Down counter and UP/Down counter in a PLC	10.	Test the functionality of Up, Down and Up- down counter for its correct operation in a given PLC.	CO2

Pract	ical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 2.7	Program PLC using ladder logic to control a LED/Lamp	11.	Develop/Execute a ladder logic program to put LED/lamp in the blinking mode	CO2
LSO 2.8	Program PLC using ladder logic to control a simple traffic light system	12.	Develop/Execute a ladder logic program to control a simple traffic light control system using PLC	CO2
LSO 3.1	Use hygrometer to measure the humidity inside the panel	13.	Troubleshooting of PLC system	CO3
LSO 3.2	Use thermometer to measure ambient temperature inside the panel			
LSO 3.3	Use tester to determine the voltage fluctuation at the power supply terminals is within specifications			
LSO 3.4	Test the ground connections of the given PLC.			
LSO 3.5	A given PLC is not working as per the logic instructions investigate the PLC to identify the cause of failure to show the desired output			
LSO 3.6	Investigate the cause of Noise in the given PLC			
LSO 3.7	PLC goes on blackout out by losing its operating power. Troubleshoot the cause of failure.			
LSO 3.8	Troubleshoot the corrupted PLC memory.			
LSO 3.9	Replace CPU and power supply fuses in a given PLC system.			
LSO 4.1	Download any open source SCADA software and install the same.	14.	Develop simple SCADA HMI applications using any one open source SCADA software and	CO4
LSO 4.2	Interpret the available components in symbol factory of SCADA software		apply dynamic properties	
LSO 4.3	Create simple SCADA HMI applications and apply dynamic properties. (Select any Three from the given list)			
i.	Turn on and off a tube light using a Switch			
ii.	Apply filling and object size properties to a rectangle, square and round object			
	Move the object, fill the object using slider and meter reading.			
	Apply orientation property to a fan and control its direction using a slider.			
V.	Move a square object horizontally first, then vertically and again horizontally by applying visibility			
LSO 4.4	property. Create historical and real time trends for the given automation			
LSO 5.1	Develop a smart irrigation device to detect the change in moisture level in the soil and controls the flow of water accordingly with a DC pump.	15.	Develop simple automation systems for the given requirement (Select any Three from the given list)	CO5

Practica	al/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 5.2	Build an electronic device that can			
	remotely control home appliances			
	with your Bluetooth-enabled			
	smartphone and a special Android			
LSO 5.3	application Develop a PLC program to control			
130 3.5	the robot in such a way that the			
	robot can automatically pick and			
	place components and works in sync			
	with the conveyor belt system.			
LSO 5.4	Develop a Automation system to			
	Open and close the door in the shop			
LSO 5.5	Develop a line following robot with			
	RFID sensor for supplying materials			
100 5 6	and automating workflow.			
LSO 5.6	Develop smart street light			
	controlling mechanism which will Switch on/off the lights			
	automatically depending on the			
	intensity of the sunlight at that			
	particular time of the day.			
LSO 5.7	Develop smart automated railway			
	crossing system to detect train			
	arrival and departure and send			
	appropriate signals to the			
	microcontroller.			

- L) Suggested Term Work and Self Learning: S2400604F Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - i. State three advantages of using programmed PLC timer over mechanical timing relay.
 - ii. It is required to have a pilot light glow, meeting all of the circuit requirements given below:
 - All four circuit pressure Switches must be closed.
 - At least two out of three circuit limit Switches must be closed.
 - The reset Switch must not be closed.
 - iii. Using AND, OR, and NOT gates, design a logic circuit that will solve this hypothetical problem
 - iv. Prepare a comparison chart of different types of PLC
 - v. Prepare a maintenance plan for a given PLC system.

b. Micro Projects:

- 1. Troubleshoot the faulty equipment/kit available in automation laboratory
- 2. Select one industry and analyze the process and propose the automation strategies' that can be used for automation.
- 3. Develop a working model of a given application using given actuators and valves.
- 4. Develop a smart irrigation device to detect the change in moisture level in the soil and controls the flow of water accordingly with a DC pump.
- 5. Build an electronic device that can remotely control home appliances with your Bluetooth-enabled smartphone and a special Android application
- 6. Develop a PLC program to control the robot in such a way that the robot can automatically pick and place components and works in sync with the conveyor belt system.

c. Other Activities:

- 1. Seminar Topics- PLC instructions, Timers and Counters used in a given PLC
- 2. Seminar Topics- Industrial Applications of PLC and SCADA, AGV, Application of automation in different area, trouble shooting of different types of PLC
- 3. Visits Visit any industry with full or semi automation and prepare a report on industrial automation used by the industry in the given section, components used, power requirement, output achieved and maintenance activities required.
- 4. Surveys- Carry out a market/internet survey of PLC and prepare the comparative technical specifications of any one type of PLC (Micro or Mini) of different manufacturer.
- 5. Product Development- Develop a prototype automatic railway crossing system
- a. Software Development- Download any open source software for PLC and install on your laptop/PC and carry out basic PLC programming
- 6. Also download any open source software for SCADA and install on your laptop/PC and carry out basic SCADA HMI programming
- 7. Surveys Carry out a internet based survey to compare SCADA and DCS

d. Self-Learning Topics:

- Basic concepts of working of robot
- Automated material handling.
- Instrumentation systems for inspection and testing for quality of the product
- Use of robots in different applications
- Intelligent Transportation Systems
- Communication standards and protocols used in PLC
- Use of PLC for different industrial applications
- Use of SCADA for different industrial applications
- Interfacing of PLC
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

		Course Evaluation Matrix							
	Theory Asses	sment (TA)**	Term W	ork Assessm	nent (TWA)	Lab Assess	ment (LA) [#]		
	Progressive Theory Assessment	End Theory Assessment (ETA)	Term \	Term Work & Self-Learning Assessment		Progressive Lab Assessment	End Laboratory Assessment		
COs	(PTA)		Assignments	Micro	Other	(PLA)	(ELA)		
	Class/Mid			Projects	Activities*	(. =, .,	(,,		
	Sem Test								
CO-1	10%	20%	20%		33%	10%	20%		
CO-2	15%	25%	20%		33%	15%	20%		
CO-3	15%	20%	20%		34%	15%	20%		
CO-4	30%	20%	20%	50%		30%	20%		
CO-5	30%	15%	20%	50%		30%	20%		
Total	30	70	20	20	10	20	30		
Marks			I	50					

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point- (O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit	Title and Number	Total	Relevant	Total		ETA (Marks)	
		Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit1.0	Industrial automation Communication and Interfacing	9	CO1	14	5	4	5
Unit2.0	PLC Programming	12	CO2	17	5	6	6
Unit3.0	Installation and maintenance of PLC systems	10	CO3	14	4	5	5
Unit4.0	SCADA and DCS	9	CO4	14	4	5	5
Unit5.0	Applications of Industrial Automation	8	CO5	11	2	4	5
	Total Marks	48		70	20	24	26

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Delevent		PLA/ELA	
S.	Laboratory Practical Titles	Relevant COs	Perfo	rmance	Viva-
No.	Laboratory Practical Titles	Number(s)	PRA* (%)	PDA** (%)	Voce (%)
1.	Transfer the control data from PLC to PC and vice versa	CO1	50	40	10
2.	Transfer the control data from PLC to PLC	C01	50	40	10
3.	Transfer the sensor data from sensor to PLC to PLC and PC	C01	50	40	10
4.	Interface the given PLC with a PC or a Laptop	C01	50	40	10
5.	Identify Different parts and front panel indicators of a PLC	CO2	50	40	10
6.	Develop Ladder logic program for different arithmetic operations	CO2	50	40	10
7.	Develop Ladder logic program for different logical operations	CO2	50	40	10
8.	Program Latch and Unlatch circuit in a PLC for motor operation	CO2	50	40	10
9.	Create delay in operation using on delay, off delay and retentive timer function in a given PLC	CO2	50	40	10
10.	Count the number of objects/events using Up counter, Down counter and UP/Down counter in a PLC	CO2	50	40	10
11.	Program PLC using ladder logic to control a LED/Lamp	CO2	50	40	10
12.	Program PLC using ladder logic to control a simple traffic light system	CO2	50	40	10

				PLA/ELA	
S.		Relevant COs	Perfo	ormance	Viva-
No.	Laboratory Practical Titles	Number(s)	PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
13.	Use hygrometer to measure the humidity inside the panel	CO3	50	40	10
14.	Use thermometer to measure ambient temperature inside the panel	CO3	50	40	10
15.	Use tester to determine the voltage fluctuation at the power supply terminals is within specifications	CO3	50	40	10
16.	A given PLC is not working as per the logic instructions investigate the PLC to identify the cause of failure to show the desired output	CO3	50	40	10
17.	Investigate the cause of Noise in the given PLC	CO3	50	40	10
18.	PLC goes on blackout out by losing its operating power. Troubleshoot the cause of failure.	CO3	50	40	10
19.	Troubleshoot the corrupted PLC memory.	CO3	50	40	10
20.	Replace CPU and power supply fuses in a given PLC system	CO3	50	40	10
21.	Download any open source SCADA software and install the same.	CO4	50	40	10
22.	Interpret the available components in symbol factory in SCADA software	CO4	50	40	10
23.	 Create simple SCADA HMI applications and apply dynamic properties (Any Three). i. Turn on and off a tube light using a Switch ii. Apply filling and object size properties to a rectangle, square and round object iii. Move the object, fill the object using slider and meter reading. iv. Apply orientation property to a fan and control its direction using a slider. v. Move a square object horizontally first, then vertically and again horizontally by applying visibility property. 	CO4	50	40	10
24.	Create historical and real time trends for the given automation	CO4	50	40	10
24	 Select any three of the following: - i. Develop a smart irrigation device to detect the change in moisture level in the soil and controls the flow of water accordingly with a DC pump. ii. Build an electronic device that can remotely control home appliances with your Bluetooth-enabled smartphone and a special Android application iii. Develop a PLC program to control the robot in such a way that the robot can automatically pick and place components and works in sync with the conveyor belt system. iv. Develop a Automation system to Open and close the door in the shop v. Develop a line following robot with RFID sensor for supplying materials and automating workflow. 	CO5	60	30	10
	vi. Develop smart street light controlling mechanism which will Switch on/off the lights automatically depending on				

		Delevent	PLA/ELA			
S.	Laboratory Drastical Titles	Relevant COs	Performance		Viva-	
No.	Laboratory Practical Titles	Number(s)	PRA* (%)	PDA** (%)	Voce (%)	
	 the intensity of the sunlight at that particular time of the day. vii. Develop smart automated railway crossing system to detect train arrival and departure and send appropriate signals to the microcontroller. 					

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

S.	Name of Equipment,	Broad	Relevant
No.	Tools and Software	Specifications	Experiment/Practical
			Number
1.	SCADA software (reputed make like Allen Bradley, Siemens etc.,)	Ready-to-use symbol library, React and respond in real-time, Real time monitoring, Friendly, manageable, secure, extensible, Easy-to-use, easy to implement, Easy configuration, simplified maintenance, Communication with PLC, easy and flexible alarm definition, data collection and analysis for new and existing systems, easy-to-use for report generation, open access to historical data, different packages available with input/output structure. Open source software SCADA software: like Ellipse/FTVSE/Wonderware/ open SCADA can also be used	14
2.	Universal PLC Training System with HMI (Of reputed make such as Allen bradely, Siemens, etc.,) Compatible with SCADA software	Human Machine Interface (HMI) display, PLC with 16 digital inputs, 16 digital outputs with RS232 communication facility. Open platform to explore wide PLC and HMI applications. Industrial look & feel. Toggle Switches, push to ON Switch, proximity sensor, visual indicator, audio indicator, and DC motor. Experiments configurable through patch board. Powerful instruction sets. Several sample ladder and HMI programs. PC based ladder and HMI programming. Extremely easy and student friendly software to develop different programs. Easy downloading of programs. Practice troubleshooting skills. Compact tabletop ergonomic design. Robust construction. PLC gateway for cloud connectivity. Open source software like Ladder logic simulator, Pico soft Simulator, Logixpro simulator, Simple EDA tools can also be used	1 to 12
3.	Safety gears	Gloves, Safety goggles, Ear protection, Dust masks and respirators.	13
4.	Power tools	Power drills, Orbital sanders, Circular saws, Impact wrenches.	13

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
5.	Hand tools	Screwdrivers, Hammers, Hand saws, Hex Key Allen Wrench Set Inch and Metric, relay puller, Multi-Tool Wire Stripper/Crimper/Cutter	13
6.	Electrical tools	Wire and cable strippers, Multimeters- Volts, Ohms, and Amps, Crimpers- Side Cutter Crimping, Wire Crimp Connector Kit, Digital Multimeter Clamp Meter with Amp, Volt, and Ohm, Non-Contact Voltage Tester	13
7.	Spare parts	PLC Programming Cables, SD Card Reader Compact flash, Wire Nut Set, Fuses- Class J 30, 35, 60, and 100-amp fuses, Class CC 2, 3, 5, 10, 15, 20, and 30-amp fuses, 5mm x 20mm 0.032 (for 4-20mA circuits), 0.5, 1, 2, 5, 10, and 15 amps, Cube Relays, Resistor Kit, batteries, LED Indicators PLC Processor (CPU), Input/ output module	13
8.	Thermo-hygrometer	Measuring range Temp.: -30 60°C / -22 140°F Measuring range rel. Humidity: 0 100% rh, Measurement protocol as PDF, Data export possible as CSV, Readable without software, data sets of measured values can be stored.	13
9.	Digital Hygrometer	maximum humidity measurement- 100%RH, temperature measurement resolution -0.1egree centigrade, humidity measurement resolution -0.1%RH, minimum operating temperature10 to -20-degree centigrade, Maximum operating temperature +45 to +50 degree centigrade	13

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
1.	Introduction to Programmable Logic Controllers	Dunning, G.	Thomson /Delmar learning, New Delhi, 2005, ISBN 13: 9781401884260
2.	Programmable Logic Controllers	Petruzella, F.D.	McGraw Hill India, New Delhi, 2010, ISBN: 9780071067386
3.	Programmable Logic Controllers	Hackworth, John; Hackworth, Federic	PHI Learning, New Delhi, 2003, ISBN: 9780130607188
4.	Industrial automation and Process control	Stenerson Jon	PHI Learning, New Delhi, 2003, ISBN: 9780130618900
5.	Programmable Logic Controller	Jadhav, V. R.	Khanna publishers, New Delhi, 2017, ISBN: 9788174092281
6.	Programmable Logic Controllers and Industrial Automation - An introduction,	Mitra, Madhuchandra; Sengupta, Samarjit,	Penram International Publication, 2015, ISBN: 9788187972174
7.	Control System	Nagrath & Gopal	New Age International Pvt Ltd, ISBN: 9789386070111, 9789386070111
8.	Linear Control Systems with MATLAB Applications, Publisher:	Manke, B. S.	Khanna Publishers, ISBN: 9788174093103, 9788174093103
9.	Supervisory Control and Data Acquisition	Boyar, S. A.	ISA Publication, USA, ISBN: 978- 1936007097
10.	Practical SCADA for industry,	Bailey David; Wright Edwin	Newnes (an imprint of Elsevier), UK 2003, ISBN:0750658053
11.	Industrial Automation: Systems and Engineering	Geoffrey Williamson	States Academic Press , 2022 ISBN 9781649649270

S. No.	Titles	Author(s)	Publisher and Edition with ISBN		
12.	Industrial Automation Technologies	Jane Taylor	States Academic Press 2023 ISBN 9781649649255		
13.	Introduction to Industrial Automation	Kian Pearson	Willford Press 2023, ISBN 9781682860864		

(b) Online Educational Resources:

- 1. Software: www.fossee.com
- 2. Software: www.logixpro.com
- 3. Software: www.plctutor.com
- 4. Software; www.ellipse.com
- 5. PLC lecture: https://www.youtube.com/watch?v=pPiXEfBO2qo
- 6. PLC tutorial: http://users.isr.ist.utl.pt/~jag/aulas/apil3/docs/API_I_C3_3_ST.pdf
- 7. https://www.youtube.com/watch?v=277wwYWolpw-PLC system troubleshooting and repair. Industrial control panel. PLC system repair.
- 8. https://www.youtube.com/watch?v=5Jmtvrch5Jg
- 9. https://www.youtube.com/watch?v=peyV9bwEaLY
- 10. https://www.youtube.com/watch?v=QdJhRmtKpxk&list=RDCMUCke36Liqw5fboMHkq1APZw&index=3
- 11. https://www.youtube.com/watch?v=ygrrRwaJz3M
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested OER, before use by the students.
 - (c) Others:
 - 1. Learning Packages
 - 2. Users' Guide
 - 3. Manufacturers' Manual
 - 4. Lab Manuals

A)	Course Code	: 2400604G(T2400604G/P2400604G/S2400604G)
B)	Course Title	: Electric Vehicle (Advanced)
C)	Prerequisite Course(s)	: Electric Vehicle (Basics)
רט)	Dationala	

D) Rationale

The automobile manufacturing sector in India is rapidly switching over to electric vehicles used for the public as well as private transport. The Govt. of India has launched the FAME-II Scheme (Faster Adoption and Manufacturing of Hybrid & Plug-in Electric Vehicles) to encourage the progressive induction of reliable, affordable and efficient electric and hybrid vehicles and to create demand for Electric Vehicles in the country. The technology is being evolved to enhance the vehicle's efficiency and running mileage by controlling the manufacturing, maintenance and recurring costs of such vehicles. Due to the rapid increase in EV demand, industries will also require skilled manpower in this area. This advanced course on electric vehicles is included as an open elective for all the diploma programmes to provide a sound knowledge of EVs to engineering diploma students and develop skills related to testing and maintenance of various electrical, electronic and mechanical systems in EVs.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the learners' accomplishment of the following course outcomes. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the student will be able to-

- **CO-1** Compute various parameters affecting Vehicle movement.
- **CO-2** Test the operation of the different elements of the Automobile System.
- **CO-3** Test the battery and motor used for Power Transmission in EVs.
- **CO-4** Test electronic control unit system of EVs.
- **CO-5** Interpret the impact of Grid to Vehicle (G2V) and Vehicle to Grid (V2G) during the charging cycle.

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes (POs)								Programme Specific Outcomes* (PSOs)	
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO-1	PSO-2	
(COs)	Basic and	Problem	Design/	Engineering	Engineering	Project	Life Long			
	Discipline Analysis		Development	Tools	Practices for Society,	Management	Learning			
	Specific of		of Solutions	Sustainability and						
	Knowledge				Environment					
CO-1	3	-	1	2	-	-	1			
CO-2	3	2	2	3	1	-	-			
CO-3	2	2	2	3	3	1	3			
CO-4	2	3	-	2	2	-	2			
CO-5	3	2	-	2	3	1	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	6	Scheme of Study (Hours/Week)					
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+	Total Hours (Cl+Ll+TW+SL)	Total Credits (C)
		L	т		SL)		
2400604G	Electric Vehicle (Advanced)	03	-	04	02	09	06

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

Course Code			Assessment Scheme (Marks)					
	Theory Assessment (TA)		Term Work & Self- Learning Assessment (TWA)		Lab Assessment (LA)		WA+LA)	
	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2400604G	Electric Vehicle (Advanced)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

• ETA & ELA are to be carried out at the end of the term/ semester.

Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as
well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project,
seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/
presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of
internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment,
the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at the course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to the attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020-related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400604G

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
 TSO 1a. Explain the vehicle movement process TSO 1b. Derive various equations for the movement of Vehicles TSO 1c. Compute different resistances affecting Vehicle movement. TSO 1d. Explain the dynamics of the given type of EV system. 	 1.1 Vehicle Movement 1.2 Rolling Resistance: Equation, Coefficient, factor affecting rolling resistance, typical values of rolling resistance 	CO1
 TSO 2 a. Identify the given elements of Automobile Systems. TSO 2 b. Describe the functions of the given elements of Automobile Systems. TSO 2 c. Explain the dynamic characteristics of the Disc Braking System for the given braking steps. TSO 2 d. Describe the Procedure for testing the given AC/DC motors. TSO 2 e. Describe the Procedure of Installation and Testing of the given EV Charging Stations. TSO 2 f. Describe the Procedure for Commissioning EV Charging Stations. TSO 2 g. Explain the functions of the EV Control Unit. 	 2.1 Suspension and Damping systems 2.2 Brake system: Half-step braking, Full step Braking 2.3 Transaxle 2.4 Elements of Noise Vibration and Harshness Control 2.5 Body balancing 2.6 Tyre Technology 	CO2
 TSO 3a. Compare different power transmission systems in EVs. TSO 3b. List the main Components of the EV Power Train. TSO 3c. Explain the functions of the given EV Power Train component. TSO 3d. Describe the testing procedure of the given EV Power Train component. 	 Unit-3.0 EV Power Transmission System 3.1 Transmission System: Single and Multi- transmission system 3.2 EV Power Train 3.3 EV Power Train Components: Battery Pack, DC-AC Converter, Electric Motor, On-Board Charger. 	CO3

Major Theory Session Outcomes (TSOs)			Units	Relevant COs
TSO 3e.	Explain the regenerative braking operation in the given EV motor.	3.4	Battery Parameters: Voltage, Current, Charging rate, efficiency, energy density,	Number(s)
TSO 3f.	Describe the speed control mechanism of the given motor.		power density, State of Charge (SoC), Depth of Discharge (DoD), State of Health	
TSO 3g.	Explain various parameters of the given battery.		(SoH), Operating Temperature, specific energy, specific power, life cycle and cost.	
TSO 3h.	Select the suitable battery for the given EV application.		Battery Assembly and Dismantling. Gear and Differential Assembly	
TSO 3i.	Describe the assembling and dismantling procedure of the given battery.		Safe disposal of used battery	
TSO 3j.	Describe the Mechanism of Gear and Differential Assembly.			
TSO 4a.	Describe the Vehicle Control Unit (VCU).	Uni	t- 4.0 Vehicle Control Unit (VCU)	CO4
TSO 4b.	Describe the functions of the given component of the Electronic Control Unit.	41	Electronic Control Unit: Battery	
TSO 4c.	Describe the connections of the given control	7.1	Management System, DC-DC Converter,	
	unit with the EV sub-system.		Thermal Management System and Body	
TSO 4d.	Explain the Interaction of Controller Area		Control Module.	
T C C	Network Communication with VCU.		Predefined functions	
TSO 4e.	Describe the Troubleshooting and Assessment		Connections with EV subsystem	
	procedure of VCU.	4.4	Controller Area Network (CAN)	
			communication	
		4.5	Interaction of CAN Communication with VCU.	
			Troubleshooting and Assessment	
			Dynamometers: Introduction	
			Environmental Chambers	
	Explain the Classification of Charging Technologies.		t- 5.0 EV Charging Technologies	CO5
TSO 5b.	Explain the impact of the Grid on Vehicle		Charging Technology: Classification	
	Charging and Vehicle Charging on the Grid.		Grid-to-Vehicle (G2V)	
TSO 5c.	Describe the testing procedure of the given Bi-	5.3	Vehicle to Grid (V2G) or Vehicle to	
	directional charging systems.		Buildings (V2B) or Vehicle to Home(V2H).	
150 5d.	Explain the Energy Management Strategies in the		Bi-directional EV Charging Systems.	
	EV.		Energy Management Strategies.	
130 58.	Explain the Wireless Power Transfer (WPT) technique for EV Charging.	ס.כ	Wireless Power Transfer (WPT) technique for EV Charging.	
	major TSO may require more than one theory session/Pr	L		

Note: One major TSO may require more than one theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400604G

Practical/Lab Session Outcomes (LSOs)		S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 2.1	Test the operation of the Control Disc Braking system and control the regenerative braking system using a test rig.	1.	 Testing of Control Disc Braking system and Control Regenerative Braking system. 	CO2
LSO 2.2	Test the performance (Speed v/s Braking Torque) of the Disc Braking System in Half step and Full step braking modes.			
LSO 2.3	Test the performance of different types of propulsion motors.	2.	Testing of Motors	
LSO 2.4	Test the continuity of the automotive wiring system in the EV	3.	 Testing of the automotive wiring system. 	

Pra	ctical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 3.1 LSO 3.2	Test the performance of a new set of batteries and aged batteries. Compare the performance of the battery	4.	Testing of Batteries used in EVs	CO2, CO3
150 3.2	and find the Fuel Gauge after discharging the battery. a. 0% - 100% b. 30% - 100% c. 50% - 100%			
LSO 3.3	Evaluate the following parameters of the given EV battery. a. Specific power			
	b. Specific energy			
	c. Life span and			
	d. Cost parameters			
LSO 3.4	Evaluate the State of Health (SoH) of the			
	given EV Battery after several			
	charge/discharge cycles.	_		
	Test the dynamic performance of the given	5.	Speed control of Electrical Motors	
moto	a) Speed and torque spectrum.			
	b) Speed and torque oscillation			
	c) Friction torque friction spectrum.			
	c) Friction torque metion spectrum.			
LSO 3.6	Test the following speed-controlled performance characteristics of the given motor;			
	a. Motor voltage over time			
	b. Motor current over time.			
	c. Speed and torque over time.			
	d. Torque over speed.			
	e. Current over speed.			
	f. Electrical input power and the			
	mechanical input power over speed			
LSO 4.1	Connect the components of the EC Units with EV subsystems.	6.	Connection of Electronic Control Unit components	CO4
LSO 4.2	Troubleshoot basic faults in the electronic control unit of EV.		 components Troubleshooting of electronic control unit 	
LSO 5.1	Evaluate the impact of the Grid on Vehicle	7.	Impacts of G2V and V2G	CO 5
	Charging and Vehicle Charging on the Grid.			
LSO 5.2 I	Prepare a layout of a charging station	8.	Demonstration of Charging stations	

- L) Suggested Term Work and Self-Learning: S2400604G Some sample suggested assignments, micro projects and other activities are mentioned here for reference.
 - **a.** Assignments: Questions/ Problems/ Numerical/ Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Design and build a physical model of an EV motor and powertrain components from scratch.
- 2. Build and simulate communication systems of EVs using some software tools.
- 3. Prepare a report on "the way carbon credit works and companies utilize it to reduce their emission values".
- 4. Develop an EV prototype power train using locally procured hardware components.

c. Other Activities:

1. Seminar Topics:

- Safe disposal process of Used Batteries.
- Charging Technologies used for charging the EV.
- EV power transmission systems.
- 2. Surveys Visit an electric vehicle manufacturing plant and prepare report on HVAC system used in EV.

3. Self-Learning Topics:

- Impact of fleet charging of EVs on Power Systems.
- Energy Management in EV.
- Fuel Cell powered bus.
- EV Battery disposal and recycling.
- Mobility and connectors.
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use the appropriate assessment strategy and its weightage, in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix							
Theory Assessment (TA)** Term Wo			rk Assessme	ent (TWA)	Lab Assessment (LA) [#]			
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term	Work & Self Assessme	0	Progressive Lab End Laborato Assessment Assessmen		
	Class/Mid		Assignments	Micro	Other Activities*	(PLA)	(ELA)	
	Sem Test			Projects				
CO-1	20%	15%	20%					
CO-2	20%	20%	20%			35%	25%	
CO-3	20%	30%	20%	70%	40%	40%	25%	
CO-4	20%	25%	20%	30%	20%	10%	25%	
CO-5	20%	10%	20%		40%	15%	25%	
Total	30	70	20	20	10	20	30	
Marks			50					

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point- (O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of the cognitive domain of the full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Vehicle Dynamics	8	CO1	12	4	5	3
Unit-2.0 Elements of Automobile.	10	CO2	15	5	6	4
Unit-3.0 EV Power Transmission System.	14	CO3	20	4	10	6
Unit-4.0 Vehicle Control Unit (VCU)	10	CO4	15	4	6	5
Unit-5.0 Charging Technologies	6	CO5	8	3	3	2
Total Marks	48		70	20	30	20

Note: Similar table can also be used to design class/mid-term/ internal question papers for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant	PLA/ELA		
S.	Laboratory Practical Titles	COs	Performance		Viva-
Ν.		Number	PRA*	PDA**	Voce
		(s)	(%)	(%)	(%)
1	Testing of Control Disc Braking system and Control				
	Regenerative Braking system.				
2	Testing of Motors.	CO2	60	30	10
3.	Testing of automotive wiring system.				
4.	Testing of Batteries used in EVs		60	30	10
		CO2, CO3			
5.	Speed control of Electrical Motors		60	30	10
6.	Connection of Electronic Control Unit components		60	30	10
		CO4			
7.	Troubleshooting of electronic control unit	-			
8.	Impacts of G2V and V2G		30	60	10
		CO 5			
9.	Demonstration of Charging stations	1	70	20	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both the end semester as well as progressive assessment of practicals. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student's performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Broad Specifications Software		Relevant Experiment/Practical Number	
1.	Disc Braking and Regenerative braking system test rig	Test rig equipment for Demonstration of Disc Braking and Regenerative Braking system operation.	1	
2.	Disc Braking System	Test rig / Software for testing the performance of the disc braking system in Half step and Full step braking mode.	1	
3.	Induction motor	Induction motor For EV applications with testing kit	2,5	
4.	Switched reluctance motor	Switched reluctance motor for EV applications with testing kit	2,5	
5.	Permanent magnet (PM) DC motors	Permanent magnet (PM) DC motors for EV applications with testing kit	2,5	
6.	Automotive wiring system	Testing facility of automotive wiring system using software /actual EV systems	3	
7.	Lithium Ion and Lead-acid Batteries	12V, 7Ah with testing setup.	4	
8.	Nickel-based batteries (metal hydride and cadmium battery).	12V, 7Ah with testing setup.	4	
9.	Battery tester	For testing battery parameters	4	
10.	Battery charger	Battery charger for EV	4	
11.	Battery Management System	Training kit or simulation for BMS	4	
12.	DC-DC Converter	48V to 12V bidirectional DC-DC Converter	4	
13.	Power Analyser	To observe the impacts of G2V and V2G	5	
14.	BMS setup	For Demonstration & training	4	
15.	DC power supply	0-32V	5	
16.	Charging Station Simulator	For Demonstration & training purposes.	5	
17.	EC Unit with EV subsystems	Electronic Control Unit Hardware parts/ software for demonstrating the Connection of Electronic Control Unit components with EV subsystems.	6,7	
18.	Facility to demonstrate the impact of the Grid on Vehicle Charging and Vehicle Charging on the Grid.	-	7	

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.	indes		
1.	Electric Vehicles: And the End of the ICE age	Anupam Singh	Kindle Edition ASIN: B07R3WFR28
2.	Wireless Power Transfer Technologies for Electric Vehicles (Key Technologies on New Energy Vehicles)	Xi Zhang, Chong Zhu, Haitao Song	Springer Verlag, Singapore; 1st ed. 2022 edition (23 January 2022) ISBN-13: 978-9811683473
3.	Modern Electric, Hybrid Electric, and Fuel Cell Vehicles	EHSANI	CRC Press; Third edition (1 January 2019) ISBN-13: 978-0367137465
4.	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles	John G. Hayes, G. Abas Goodarzi	Wiley; 1st edition (26 January 2018) ISBN-13: 978-1119063643
5.	New Perspectives on Electric Vehicles	Marian Găiceanu (Editor)	IntechOpen (30 March 2022) ISBN-13: 978-1839696145
6.	Electric and Hybrid Vehicles,	Tom Denton, Taylor & Francis	2nd Edition (2020) ISBN- 9780429296109
7.	Hybrid Electric Vehicles: Energy Management Strategies	S. Onori, L. Serrao and G. Rizzoni	Springer (2016) ISBN: 978-1-4471-6781-5
8.	Electric & Hybrid Vehicles	A.K. Babu	Khanna Publishing House, New Delhi, 1st Edition (2018) ISBN: 9789386173713, 9386173719
9.	Power Electronics: Circuits, Devices and Applications,	Rashid, M. H.	Pearson, 3rd edition, (2013) ASIN: B07HB3BM1W
10.	Electric Vehicle Engineering	Liana Walker	lanrye International2023, ISBN-978164729097
11.	Electric Vehicles: Current Progress & Technologies	Vanessa Jones	Murphy & Moore Publishing 2023, ISBN 9781649872746
12.	Electric and Hybrid Vehicles: Principles, Design and Technology	Mary Murphy	Larsen and Keller Education 2023 ISBN 9781641728520

(b) Online Educational Resources:

- 1. https://www.energy.gov/eere/fuelcells/fuel-cell-systems
- 2. https://powermin.gov.in/en/content/electric-vehicle
- 3. https://www.iea.org/reports/electric-vehicles
- 4. https://www.oercommons.org/search?f.search=Electric+Vehicles
- 5. https://fame2.heavyindustries.gov.in/Index.aspx
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages on EV
- 2. EV Users' Guide
- 3. EV Manufacturers' Manual
- 4. EV Lab Manuals

Diplom	na in Mechanical Engineering	Semester- VI	SBTE, Bihar
A)	Course Code	: 2400604H(T2400604H/P2400604H/S2400604H)	
B)	Course Title	: Robotics (Advanced)	
C)	Pre- requisite Course(s)	: Robotics (Basic)	

D) Rationale

Efficiency and quality are the demands of industry 4.0. Robotics is a constituent of Industry 4.0 which not only provides the former two but also is beneficial for hazardous and similar challenging situations. The use of robotic technology is developing at a very fast rate in all types of industries whether manufacturing, service or tertiary. Engineers should be competent to use the robotic technology for industry and society advantage. This course aims for the diploma engineers to have advanced skills in robotic applications and use in digital manufacturing.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Plan the use of robots in engineering applications.
- **CO-2** Elucidate the conceptual place of the robotic components for engineering processes.
- **CO-3** Use robots for small automatic robotic applications.
- **CO-4** Compute the economics associated with use of robots in industries.
- **CO-5** Select appropriate robot for industrial requirements and other applications.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	Analysis	PO-3 Design/Developmen t of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment		PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	-	-	3	-	2	-	2		
CO-2	-	2	3	2	-	-	-		
CO-3	3	2	3	-	-	-	2		
CO-4	3	-	-	2	-	-	-		
CO-5	3	2	-	-	2	-	-		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

		Scheme of Study (Hours/Week)								
Course Code			Lab Instructio n	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits				
		L	т	(LI)			(C)			
2400604H	Robotics (Advance d)	03	-	04	02	09	06			

Legend:

- CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)
- LI: Laboratory Instruction (Includes experiments/practical performances/ problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

- TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)
- SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc
- C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)
- **Note:** TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

	Course Title		Assessment Scheme (Marks)						
٩		Theory Assessment (TA)		Term Work & Self- Learning Assessment (TWA)		Lab Assessment (LA)		(Al+LA)	
Course Code		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+T	
2400604H	Robotics (Advanced)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)
 TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects,

industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400604H

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1a. Define the need and scope of industrial robots.	Unit-1.0 Robot Kinematics, Dynamics and Industrial Applications	CO2, CO3
TSO 1b. Describe the concept of robot dynamics with regards to methods for orientation and location of objects.	 1.1 Definition need and scope of Industrial robots 1.2 Robot dynamics – Methods for orientation and 	
TSO 1c. Analyse robot direct kinematics for the given 2 DOF planar manipulator.TSO 1d. List types of robots	location of objects 1.3 Planar Robot Kinematics – Direct and inverse kinematics for 2 Degrees of Freedom.	

Diploma in Mechanical Engineering

Semester- VI

oloma in	Mechanical Engineering S	emester- VI S	BTE, Bihar
Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1e.	List safety steps while handling the given robot.	1.4 Safety while operating and handling robot	
TSO 1f.	Interface robots with the given welding machine.	1.5 Robot Industrial applications:	
TSO 1g.	Interface robots with the given painting machine.	 Welding Robots-Welding Guns, Welding Electrodes, Welding Power Sources, shielding 	
TSO 1h.	Interface robots with the given assembly machine.	 gases, Robot interfacing Spray painting Robots, assembly operation, cleaning. 	
TSO 2a.	Explain the techniques to control robot motion.	Unit– 2.0 Robot Drives, Control and Material Handling	CO2, CO3
TSO 2b.	Describe the given robot drive system.	nunung	
	Describe the types of grippers.	2.1 Controlling the Robot motion.	
	Design grippers for specific application.	2.2 Position and velocity sensing devices.	
	Test the designed gripper for the	2.3 Drive systems – Hydraulic and Pneumatic drives	
	application.	2.4 Linear and rotary actuators and control valves	
TSO 2f.	Use Bar code technology for robotic applications.	2.5 Electro hydraulic servo valves, electric drives, motors	
TSO 2g.	Integrate radio frequency identification technology in robotic applications.	2.6 End effectors – Vacuum, magnetic and air operated grippers	
TSO 2h.	Assemble an automated guided vehicle for the given situation using standard components.	2.7 Material Handling; automated guided vehicle systems, automated storage and retrieval systems (ASRS)	
TSO 2i.	Assemble a simple automated storage and retrieval systems (ASRS) for the given situation using standard	 Bar code technology Radio frequency identification technology. 	
	components.		
TSO 3a.	Differentiate between various work cell layouts.	Unit-3.0 Robot Cell Design and Application	CO3
TSO 3h	Select work cell for specific robot with	3.1 Robot work cell design, control and safety	
150 55.	justification.	3.2 Robot cell layouts	
TSO 3c	Analyse robot cycle time.	3.3 Multiple Robots and machine interference	
	Explain industrial applications of robotic	3.4 Robot cycle time analysis	
	cell. Follow safety procedures in robotic cell.	3.5 Industrial application of robotic cells	
	List different programming languages for the robots	Unit– 4.0 Robot Programming and Economics of Robotization	CO1, CO4, CO5
TSO 4b.	Describe artificial intelligence		
	Write a programme in the required language to operate a robot for the given	4.1 Characteristics of task level languages through programming methods	
	task.	4.2 Motion interpolation	
TSO 4d.	Optimise robot programming parameters.	4.3 Artificial intelligence: Goals of artificial	
	Select a robot on the basis of cycle time analysis.	intelligence, AI techniques, problem representation in AI	
TSO 4f.	Conduct an economic analysis for use of robots.	4.4 Problem reduction and solution	
TSO 4g.	Follow testing methods and acceptance	techniques.4.5 Application of AI and KBES in Robots	
	rules for industrial robots.	4.6 Selection of Robots; Factors influencing the choice of a robot, selection of robot components, robot performance testing,	
		work cycle time analysis4.7 Economics analysis for robotics, cost datarequired for the analysis	
		required for the analysis4.8 Methods of economic analysis; Pay back	
		4.8 Methods of economic analysis; Pay back method, equivalent uniform annual cost	
		method, return on investment method.	
		4.9 Testing methods and acceptance rules for industrial robots	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 5a. Describe applications of robots in healthcare and medicine.TSO 5b. Describe applications of robots in Construction industry.	Unit–5.0 Applications in Non-manufacturing Environments	CO5
Construction industry. TSO 5c. Describe applications of robots in Underground coal mining.	 5.1 Applications of Robots in Healthcare and medicine Construction industry 	
TSO 5d. Describe applications of robots in uutilities, military & firefighting operations.	 Underground coal mines Utilities, military & firefighting operations 	
TSO 5e. Describe applications of robots in undersea and space	Undersea	
TSO 5f. Describe applications of robots in brief in logistics, retail and hospitality, and smart cities.	 Space Logistics, Retail and Hospitality 	
TSO 5g. Describe applications of robots in farming and agriculture in brief explain in brief the use of microrobots, nano robots, soft robots, humanoid robots	 Smart Cities Farming and Agriculture 5.2 Overview of Microrobots, nano robots, soft robots, humanoid robots 	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400604H

Practical/Lab Session Outcomes (LSOs)		Laboratory Experiment/Practical Titles	Relevant COs Number(s)	
LSO 1.1 Identify Wireless Sensor Network. LSO 1.2 Use wireless sensor Network for different robotic applications	1.	Identify different wireless sensor network in robotics viz. ZigBee, LoRa.	CO1, CO3	
LSO 2.1 Identify different Radio Frequency (RF) Controlled Wireless LSO 2.2 Use Radio Frequency (RF) Controlled Wireless for different robotic applications.	2.	Use different Radio Frequency (RF) Controlled Wireless Robots.	CO1, CO2	
LSO 3.1 Identify the different Voice operated robot with speaker identification technology LSO 3.2 Use different Voice operated robot with speaker identification technology for different robotic applications.		Examine different voice operated robot with speaker identification technology.	CO1, CO3	
LSO 4.1 Identify the components required for a computer-controlled pick and place robot (wireless). LSO 4.2 Integrate the components for the required application.	4.	Design a computer-controlled pick and place robot (wireless)	CO1	
LSO 5.1 Identify the components required for a Zigbee controlled Boat with wireless video and voice transmission. LSO 5.2 Integrate the components for the required application.		Design a Zigbee controlled Boat with wireless video and voice transmission.	CO2, CO3	
LSO 6.1 Identify the components required for a PC controlled wireless Multipurpose robot for engineering applications. LSO 6.2 Integrate the components for the required application.	6.	Design a PC controlled wireless Multipurpose robot for simple engineering applications.	CO2, CO4, CO5	
LSO 7.1 Identify the components required for an unmanned arial photography LSO 7.2 Integrate the components for the required application.	7.	Design an unmanned arial photography system.	CO3, CO5	

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 8.1 Develop a program LSO 8.2 Simulate palletizing and depalletizing operations through robots.	8.	Develop program for real time (online TPP) Palletizing and Depalletizing operations through robots.	CO5
LSO 9.1 Develop a program LSO 9.2 Simulate direction control and step control logic for robotization	9.	Develop TPP / Offline program for vision-based inspection for robots.	CO4, CO5
LSO 10.1 Develop a program LSO 10.2 Simulate robotising an inspection and part assembly.	10.	Program and simulate coordinated identification, inspection and part assembly for robots.	CO1, CO5
LSO 11.1 Develop a program. LSO 11.2 Simulate obstacle avoidance of robots.	11.	Develop obstacle avoidance robot Programming	CO1, CO5
LSO 12.1 PLC programming. LSO 12.2 Simulate robotising of welding operation.	12.	Program and simulate welding operation using robot simulation software.	CO1, CO5
LSO 13.1 Simulate robotising of drilling operation.	13.	TPP / Offline program for drilling operation.	CO1, CO5
LSO 14.1Develop a program for an industrial application. LSO 14.2Execute the robot programme.	14.	Program to execute an industrial robot application using a given configuration.	CO1, CO5
LSO 15.1 Use robot simulation software for Direct Kinematic analysis upto 4-axis robots LSO 15.2 Correlate the simulated results with respective mathematical calculations.	15.	Analyse Direct Kinematics of 4-axis robot using available software.	CO2

- L) Suggested Term Work and Self Learning: S2400604H Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - **b. Micro Projects:** A suggestive list of micro-projects is given here. Similar micro-projects that match the COs could be added by the concerned course teacher. The student should strive to identify eco-friendly or recycled material prior to selection for robotic applications.
 - 1. Develop coin separating robot.
 - 2. Develop robot using radio frequency sensors for material handling.
 - 3. Develop robot for land mine detection.
 - 4. Develop a robot for car washing.
 - c. Other Activities:
 - 1. Seminar Topics: Recent developments in the industrial applications of robotics
 - 2. Visits: Visit a robotic exhibition.
 - 3. Case Study: Identify a robotic application in automobiles and present a case study
 - 4. Download videos related to simple robotic applications in domestic and industrial purposes.
 - 5. Self-Learning Topics:
 - Robotic component manufacturers

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix										
	Theory Asses	sment (TA)**	Term W	ork Assessr	nent (TWA)	Lab Assessment (LA) [#]					
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Work 8	& Self- Learr	ning Assessment	Progressive Lab Assessment	End Laboratory Assessment				
	Class/Mid		Assignments	Micro	Other Activities*	(PLA)	(ELA)				
	Sem Test			Projects							
CO-1	25%	23%	20%	10%	25%	10%	20%				
CO-2	20 %	23%	20%	10%	25%	20%	20%				
CO-3	15%	17%	20%	25%	25%	20%	20%				
CO-4	20%	20%	20%	15%	25%	20%	20%				
CO-5	20%	17%	20%	40%		30%	20%				
Total	30	70	20	20	10	20	30				
Marks			<u> </u>	50							

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.
- N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Number and Title	Total	Relevant	Total	ETA (Marks)			
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0 Robot Kinematics, Dynamics and Industrial Applications	12	CO2, CO3	16	6	5	5	
Unit- 2.0 Robot Drives, Control and Material Handling	10	CO2, CO3	16	4	8	4	
Unit- 3.0 Robot Cell Design and Application	8	CO3	12	2	4	6	
Unit- 4.0 Robot Programming and Economics of Robotization	10	CO1, CO4, CO5	14	4	4	6	
Unit– 5.0 Applications in Non- manufacturing Environments	8	CO5	12	4	4	4	
Total Marks	48		70	20	25	25	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Delevent		PLA/ELA	
S.	Laboratory, Dreatical Titles	Relevant COs	Perfo	Viva-	
No.	Laboratory Practical Titles	Number(s)	PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
1.	Identify different wireless sensor network in robotics viz. ZigBee, LoRa.	CO1, CO3	40	50	10
2.	Use different Radio Frequency (RF) Controlled Wireless Robots.	CO1, CO2	40	50	10
3.	Examine different voice operated robot with speaker identification technology.	CO1, CO3	40	50	10
4.	Design a computer-controlled pick and place robot (wireless)	CO1, CO4	40	50	10
5.	Design a Zigbee controlled Boat with wireless video and voice transmission.	CO2, CO3	40	50	10
6.	Design a PC controlled wireless Multipurpose robot for simple engineering applications.	CO3, CO4	40	50	10
7.	Design an unmanned arial photography system.		40	50	10
8.	Develop program for real time (online TPP) Palletizing and Depalletizing operations through robots.	CO5	40	50	10
9.	Develop TPP / Offline program for vision-based inspection for robots.	CO4, CO5	40	50	10
10.	Program and simulate coordinated identification, inspection and part assembly for robots.	CO1, CO5	40	50	10
11.	Develop Obstacle avoidance robot Programming	CO1, CO5	40	50	10
12.	Program and simulate welding operation using robot simulation software.	CO1, CO5	40	50	10
13.	TPP / Offline program for drilling operation.CO1, CO54050		50	10	
14.	Program to execute an industrial robot application using a given configuration.	CO1, CO5	40	50	10
15.	Analyse Direct Kinematics of 4-axis robot using available software.	CO2, CO3	40	50	10

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to beprepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources(OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/ Practical Number	
1.	6 Axis Articulated Robot (Material Handling)- 1 No	 Articulated Type Controlled axis: 6-axes (J1, J2, J3, J4, J5, J6) Reach: 717 mm Installation Floor, Upside-down (Angle mount) Motion range (Maximum Speed) J1 Axis Rotation7.85 rad/s J2 Axis Rotation 6.63 rad/s J3 Axis Rotation 9.08 rad/s J4 Axis Rotation 9.60 rad/s J5 Axis Rotation 17.45ras/s Max. load capacity Wrist: 4Kg Allowable Load moment 16.6 N-m at wrist J4 Axis, J5 Axis, J6 Axis Allowable Load inertia).47 kg-m² at wrist J4 Axis J5 Axis, J6 Axis Repeatability: +/- 0.05mm Mass: 21 Kg Minimum Installation environment: Ambient temperature: 0 – 45°C Ambient humidity: Normally 75%RH or less. No dew, nor frost allowed. Vibration Acceleration: 4.9 m/s2 (0.5G or less) 	1, 2, 3, 12	
2.	6 Axis Articulated Robot (General Purpose- Welding, Assembly, Drilling) - 1 No	Link 1: 300 mm Link 2: 300 mm Joint actuator: DC Stepper Motor Transmission: Timing Belt Drive Position feedback: Proximity Switch Gripper actuator: Pneumatic Weight of robot: 50 Kg. Accuracy: ±0.3 Repeatability: ±0.2Tip Velocity range: 500 mm / minPay load capacity: 2 kg (including griper) J1 - Waist: ± 140°J2 - Shoulder: -100 - 60°J3 - Elbow: - 70 + 10°J4 - Wrist rotate: ± 70°J5 - Wrist pitch: ± 35°J6 - Wrist roll: ± 180°External I/O8 Programmable digital inputs8 Programmable digital outputs	8, 9, 14	
3.	A mounted vision system with software (Free open source Robot simulation software)	Integrity Serial Bus System, CAN to Build Intelligent Device Network, Open Hardware Platform, Arduino, to control Robot sub-Systems of motor-sensor, movable Omni Wheel of Omni-Directional, Actuator operation control by DC Encoder Motor, DC-Motor control and operation by Accelerometer, Gyro, Ultrasonic and PSD sensor, Androx Studio; brushless ILM 70×10 Robo Drive DC motor; sensor-actuator units of ARMAR-4; SD-25-160-2A-GR-BB Harmonic Drive reduction gear unit high gear ratio of 160: 1; structural parts (white) are made out of high-strength aluminum, Hollow shaft with strain gauges for torque sensing, motor's magnetic incremental encoder (AMS5306), digital buses (SPI or 12C); Motor interface PCB includes a 13-Bit temperature-to-digital converter with a temperature range from -40°C to 125°C (Analog Devices ADT7302)	3, 4, 5, 11	
4.	6-axis Robotics Trainer	Programmable robotic arm with an interactive front panel. Software to demonstrates functioning of the trainer as well as allows a user to develop their own programs. NV330; 8 bit microcontroller to ARM processors; Record and Play capability; Optional interfacing with PL C ; Touch operated	3, 4, 5, 13	

		Semester- vi	SDIE, Dillar
S. No.	Name of Equipment, Tools and Software	Broad Specifications ON/OFF Switch; Auto set to home position; Applications can be developed; Data acquisition using USB	Relevant Experiment/ Practical Number
5.	E-Yantra Firebird kit	 Fire Bird V 2560 Robot Spark V Robot Fire Bird V P89V51RD2 adapter card Fire Bird V LPC2148 adapter card LSM303 3 axis digital accelerometer and 3 axes magnetometers L3G4200 3 axis digital gyroscope Gyroscope, accelerometer and GPS interfacing module for the robot GPS receiver Zigbee Modules 100m range Zigbee Modules Adapter Metal-gear Servo Motors Servo Motor Based Gripper kit for the Fire Bird V robot Sharp infrared range sensor (10cm to 500cm) Arduino Uno/Nano Hexapod 16 Programming Software (AVR studio, Keil, AVR Boot loader, Flash Magic) 	1, 3, 5, 6, 7, 10
6.	Robot simulator for Robotics	Educational networking licensed Robotic system with simulation software	2, 8, 10
7.	Assorted sensors	Optical encoders, Acoustic sensors ,IR, Potentiometer, RTD, Thermistor, strain gauge, piezoelectric, etc.	4
8.	Vision equipment	Camera, Imaging Components: Point, Line, Planar and Volume Sensors	1, 4, 10
9.	Raspberry Pi kit	1.2GHz quad-core Broadcom BCM2837 CPU with 1GB DDR2 RAM with in-built Wi-Fi & Bluetooth Video Core IV 3D graphics core 40 pin extended pins - with 27 GPIO pins Micro SD slot Multiple ports: Four USB ports, full sized HDMI, four pole stereo output and composite video port, CSI camera port and DSI display port 10/100 BaseT Ethernet Micro-USB, power source 5V, 2A	7, 9

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
1.	Introduction to Robotics Mechanics and	John Craig	Pearson Education
	Control		978-9356062191
2.	Robotics and controls	Mittal R.K., Nagrath I.J.	Tata McGraw Hill Education Pvt. Ltd.; 2017; 978 -0070482937
3.	Robotics and Image Processing: An	Janaki Raman. P. A	Tata McGraw Hill Publishing company
	Introduction		Ltd., 1998; 978-0074621677
4.	Industrial Robotics -Technology,	Nicholas Odrey, Mitchell Weiss,	McGraw Hill Education; 2nd Edition; 978
	Programming and Applications	Mikell Groover Roger Nagel, Ashish	-1259006210
		Dutta	

Diploma in Mechanical Engineering

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
5.	Robotic Engineering: an integrated	Richard D. Klafter, Thomas A. Thomas	Prentice Hall of India, N. Delhi, 2009;
	approach	A. Chmielewski, Michael Negin	978-8120308428
6.	Industrial Robotics Technology,	Mikell P. Groover, Mitchell Weiss,	McGraw-Hill Education, Second Edition,
	Programming and Applications	Roger N. Nagel, Nicholas G. Odrey	978-1259006210
7.	Robotics	Appuu Kuttan K. K.	Dreamtech Press, First Edition, 2020,
7.			978-9389583281
8.	Introduction to Robotics: Analysis, Control,	Saeed B. Niku	Wiley; Second Edition,
	Applications		978-8126533121
9.	Essentials of Robotics Process Automation	S. Mukherjee	Khanna Publication, First Edition, 978-
			9386173751
10.	Robotics	R R Ghorpade, M M Bhoomkar	Nirali Prakashan
			978-9388897020
11.	Mechatronics: Engineering Fundamentals	Allie Weaver	Murphy & Moore Publishing 2022 ISBN
			9781649872758
12.	Elements of Robotics	Greg Scott	States Academic Press 2022 ISBN
12.	Liements of Robotics		9781649649261
			5701045045201
13.	Robotics: Design, Construction and	Allie Weaver	Willford Press 2022 ISBN
	Applications		9781682860944
14.	Modern Robotics: Mechanics, Systems and	Julian Evans	Larsen and Keller Education 2022 ISBN
	Control		9781641728515
15.	Introduction to Mechatronics	Randy Dodd	Larsen and Keller Education 2022 ISBN
			9781641728493
16.	Introduction to Robotics	Julian Evans	Larsen and Keller Education 2022 ISBN
			9781641728503
	(b) Online Educational Resources:		

(b) Online Educational Resources:

- 1. https://web.iitd.ac.in/~saha/ethiopia/appln.pdf
- 2. https://nptel.ac.in/courses/112105249
- 3. https://www.robotsscience.com/industrial/industrial-robots-types-applications-benefits-and-future/
- 4. https://www.marian.ac.in/public/images/uploads/pdf/online-class/MODULE-6%20ROBOTICS%20INDL_APPLNS-converted.pdf
- 5. https://forcedesign.biz/blog/5-common-industrial-robot-applications
- 6. https://www.hitechnectar.com/blogs/top-industrial-robotics-applications-role-of-robots-inmanufacturing/
- 7. https://en.wikipedia.org/wiki/Industrial_robot
- 8. https://www.youtube.com/watch?v=fH4VwTgfyrQ
- 9. https://www.youtube.com/watch?v=aW_BM_S0z4k
- 10. https://www.automate.org/industry-insights/smarter-robot-grasping-with-sensors-software-thecloud
- 11. https://robots.ieee.org/robots/?t=all
- 12. https://www.youtube.com/watch?v=fc_Cynqr6jM
- Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested OER, before use by the students.

(c) Others:

1. Learning Packages:

- https://www.edx.org/learn/robotics
- https://www.coursera.org/courses?query=robotics
- https://www.udemy.com/topic/robotics/
- https://library.e.abb.com/public/9a0dacfdec8aa03dc12578ca003bfd2a/Learn%20with%20ABB.%20Robo tic%20package%20for%20education.pdf

2. Users' Guide:

- https://roboindia.com/store/DIY-do-it-your-self-educational-kits-robotics-embedded-system-electronics
- https://www.robomart.com/diy-robotic-kits
- https://www.scientechworld.com/robotics

3. Lab Manuals:

- http://www-cvr.ai.uiuc.edu/Teaching/ece470/docs/ROS_LabManual.pdf
- https://www.jnec.org/labmanuals/mech/be/sem1/Final%20Year%20B.Tech-ROBOTICS%20LAB%20%20MANUAL.pdf

Diploma in Mechanical Engineering		Seme	ster -VI	SBTE, Bihar
A)	Course Code	:	2425606(P2425606/S2425606)	
B)	Course Title	:	Major Project	
C)	Pre- requisite Course(s)	:		
ח)	Rationale			

Rationale U)

Project work plays a very important role in engineering education in developing core technical skills, soft skills and higher level of cognitive, psychomotor and affective domain skills. Major Project work is normally done when students have acquired sufficient knowledge, skills and attitude and are able to integrate all these, entirely in new situation or task to solve the problems of the industries/field agencies/etc.

Through major project work, students get direct exposure to the world of work in their relevant field. They are intrinsically motivated to explore new things, new methods, new design, many more ideas and also develop out of the box thinking abilities, creative and innovative capabilities. It also develops many soft skills like confidence, communication skills, creative ability, inquisitiveness, learning to learn skills, lifelong learning skills, problem solving skills, management skills, positive attitude, ethics etc.

Normally in a curriculum document, there is a mention of project work indifferent context. In situation one, project work is reflected as micro project under each and every course curricular detailing, in the form of sessional work mentioned under different semesters. These projects are normally related to the developing skills in respective course of the specific programme.

In the context of diploma programme in Bihar, minor project work will be carried out in Semester 5 with emphasis on project planning.

Major project work is reflected as a course in the total programme structure, normally at 6thsemester depending on the requirement of the programme. Through major project, students try to bring the industrial/real world problems in institutional setting, may be in collaboration/ networking with industries/field agencies/enterprises as per the requirement of different diploma programmes.

- A) **Course Outcomes:** After completion of the major project work, students will be able to –
 - CO-1 Integrate the knowledge (K), skills (S), attitudes (A)developed, in a new task or problem identified in the form of project work.
 - CO-2 Develop higher level of cognitive, psychomotor and affective domain skills relevant to the course/programme.
 - CO-3 Solve the industrial/real world problems/tasks by Integrating the generic skills/soft skills/employable skills with relevanttechnical skills.
 - CO-4 Develop thecapabilities and skills of innovativeness, creativity, resourcefulness, time management, problem solving abilities, interpersonal skills, pro-activeness, cost effectiveness, environment consideration and sustainability.
 - CO-5 Prepare the project report.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	2	3	-	-	-	1		
CO-2	3	-	3	-	-	-	1		
CO-3	3	-	3	3	-	-	1		
CO-4	3	2	3	-	2	2	1		
CO-5	3	-	3	-	-	2	-		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course		Scheme of Study (Hours/Week)						
Course Code	Course Title		room uction CI)	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
			Т						
2425606	Major Project	-	-	08	04	12	06		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

				Α	ssessment S	cheme (Mar	·ks)			
			Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)	
	Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA	
	2425606	Major Project	-	-	20	30	50	100	200	

Legend:

- PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)
- PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)
- TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
 - Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Suggested Implementation of Major Project:

Under the minor project in fifth semester, project planning is almost over. The projects are identified and allocated to students. Teacher's role is important as they act as guide, facilitator, catalyser, motivator to promote brain storming, thinking, creativity, initiativeness and many other skills in the students. Teachers should help or guide continually to monitor whether the students are proceeding in the right direction as per outcomes to be attained.

It is also suggested that teachers are not supposed to guide and plan each and every step from the point of view of execution of the project, otherwise it will curb the creativity or thinking process of the students. Teachers have to see that he or she is able to create think tank for this fast-technological world of work for the growth of our country. Following points should be taken into consideration while implementing the major project work.

The following steps are undertaken under the major project-

- 1. Design, Development and Execution of the Major Project.
- 2. Quality of Project Report Writing and its Presentation.

1.0 Design, Development and Execution of Major Project:

Projects design, development, execution is done by the students under the guidance and feedback by respective teachers for attainment of courses specific outcomes, POs and PSOs.

Continual Monitoring, feedback and assessment mechanism on weekly progress/updates on action taken on different criteria and sub-criteria of the project work need to be planned for individual and team of students. Path breaking teachers who think out of the box are required to guide, monitor and evaluate the project work.

1.1 Unique Features of Major Project:

Following important characteristic features of project need to be given special emphasis during the implementation and evaluation of the major project work-

- Innovativeness
- Creativity
- Originality
- Pro-activeness
- Initiativeness
- Cost Effectiveness
- Resourcefulness
- Development of Soft Skills/Generic Skills
- Ethical Issues
- Environmental Considerations
- Simulated/Automated Industry's/Improvised Process
- Application or Utility in the World of Work.
- Relevance to the Curriculum
- Mapping of Outcomes of Project with Pos and PSOs (if applicable)
- Feasibility of Implementation of the Project

2.0 Quality of Project Report Writing and its Presentation:

Following points need to be taken care of during report writing, its implementation and evaluation-

- Report writing as per prescribed format
- Clarity of outcomes
- Innovativeness
- Presentation of Data
- Data Analysis, Interpretation and Result
- Quality of Product/Prototype

2.1 Project Report Writing:

The suggested format of the project report is mentioned below for teacher's and students' reference:

- i. Problem Statement/ Project Title
- ii. Abstract
- iii. Literature Review
- iv. Outcomes of the Project
- v. Project Planning, Design and Development
- vi. Methodology
- vii. Implementation and Testing
- viii. Result and its Interpretation
- ix. Summary
- x. References / Bibliography

2.2 Presentation & Discussion:

Quality of presentation of data need to be ensured using the following criteria -

- Clarity in Communication and Presentation
- Voice Audibility
- Use of Media and Methods
- Satisfying the Queries of Audience
- Attainment of Outcomes

2.3 Project's Potential:

Futuristic scope and recommendation for further studies related to project may be assessed from the following criteria -

- Papers Published or Award Received
- Exhibition or Display or Showcase of Project in Competition or Exhibition or Tech Fest
- Evaluation of Working/Testing of Projects or Prototype
- Relevance and Applications in the World of Work
- Recognition in any Form
- Related Areas/Sub Areas for Further Studies

J) Assessment of the Major Project:

For objective, valid and reliable assessment, different tools of assessment such as a checklist, rating scale, assessment rubric, observation schedule, portfolio assessment, incidental records etc. need to be prepared. Even the students may been courage to adopt self-assessment techniques using the assessment rubrics.

The students need to be assessed continuously based on the suggested below mentioned assessment criteria at project planning stage. The project guide must prepare detailed rubric(s) for each criteria to have more valid and reliable assessment. Criteria of assessment of major project work are mentioned below.

Assessment Scheme for Major Project

S.	Suggested Assessment Criteria	Suggested Weightage (%)
No.		
1.	Project Planning during Minor Project Work	
	1.1 Identification of Area/Problem Statement	
	1.2 Literature Survey	
	1.3 Formulation of Project Title	30
	1.4 Clarity in Formulation of Outcomes of The Project	
	1.5 Preparation of Synopsis	
	1.6 Presentation of Synopsis	
2.	Design, Development and Execution of the Project.	
		45
	2.1 Unique Features of Major Project	
3.	Quality of Report Writing and Presentation.	
	3.1 Report Writing	25
	3.2 Presentation & Discussion	
	3.3 Project's Potential	
	TOTAL	100

A)	Course Code	: 2400107 (T2400107)
B)	Course Title	: Professional Ethics

C) Pre- requisite Course(s)

D) Rationale

One of the programme outcomes of the diploma course incorporates ethical practices in application of appropriate technology in context of society, sustainability, environment. It is of great importance to distinguish between the terms values and ethics. Ethics are norms of behaviour that are set by authorities at workplace. The persons belonging to that workplace are expected to follow the norms. Ethical behaviour at workplace affects the person's relation to people, creates a positive impact on business processes and environment. It is very important that a person has not only understanding of ethical behavior but also the responsibility to set ethical practices in own area of work.

(CE, CSE, ELX, ELX (R), FTS, ME, ME (Auto), AIML, MIE, CHE, CRE, FPP, GT)

: General awareness about moral values and different workplaces

While values are personal preferences or choices, they may sometimes contradict with ethics at his workplace. The values of a person affect behavior and his decision making.

This course is meant to sensitize the student to ethics in profession and motivate them to demonstrate ethical behavior in day to day activities and be aware of ethics in profession.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Demonstrate good values and ethics in the day to day activities and at workplace.
- **CO-2** Identify a set of values and ethics related to fair professional practice.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (Cos)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	3	3	3	3	3	3	3		
CO-2	3	3	3	3	3	3	3		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

	Course	Scheme of Study (Hours/Week)						
Cousre Code	Title	Classroom Instruction (CI)		Notional Hours (TW/ Activities+	Total Hours	Total Credits		
		L	Т	SL)	(CI+TW/ Activities)	(C)		
2400107	Professional Ethics	01	-	-	01	01		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

				Assessment	Scheme (Ma	arks)		
ode			Theory Assessment Term Work& S (TA) Learning Assessi (TWA)		Assessment			(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total marks (TA
2400107	Professional Ethics	25	-	-	-	-	-	25

Legend:

PTA: Progressive Theory Assessment in the classroom (includes class test, mid-term test, and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro-projects, industrial visits, self-learning, any other student activities, etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally** (40%) as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignments, micro-projects, seminars, and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria for internal as well as external assessment may vary as per the requirement of the respective course. For valid and reliable assessment, the internal faculty should prepare a checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills,

Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400107

Maj	jor Theory Session Outcomes (TSOs)	Units	TSO 2a. Re evant COs Number(s)
TSO 1a. TSO 1b. TSO 1c.	humanity, honesty, punctuality, respect, peace, empathy	 Unit-1.0 Values and Ethics in Day to Day Life 1.1. Values- Definition and examples, Ethics- definition and examples, Concept of attitude and development of attitude 1.2. Importance of values and ethics in day to day activities and at workplace- Ethical ways of communication, environment considerations in engineering processes, Basi concept of Carbon footprint, ethics at workplace 1.3. Examples of situations depicting values- base decisions and ethical behavior in day to Day I 	CO1
TSO 2a.	Identify the relevance of profession to society and environment	Unit-2.0 Values and Ethics in Profession	CO1, CO2
TSO 2b. TSO 2c.	Identify the need of values and ethics in profession related activities Identify Ethical conflicts	 2.1 Relevance of profession to society 2.2 ethical principles such as respecting others are ourselves, respecting the rights of others, keeping promises, avoiding unnecessary problems to others, avoiding cheating and dishonesty, showing gratitude towards other and encouraging them to work 2.3 Identification of activities and related ethical and unethical behavior for professional activities in their area of work 2.4 Examples of situations depicting values- base decisions and ethical behavior 	5

Note: One major TSO may require more than one Theory session/Period.

- **K)** Suggested Activities and Self-Learning: Reading books related to values and ethics/Epics/ Daily news and discussions in group
 - a. Assignments: Preparation for group discussion, panel discussion, role play, case study, seminar, skits
 - a. Micro Projects: Skits development and performance, poster making,
 - b. Activities: Role Play, Case studies, Debates, Group Discussion
 - c. Suggested Seminar/ Debates on Topics such as:
 - i. charters of professions
 - ii. Importance of Values and ethics in identified profession
 - iii. Issues of ethical conflicts- Professional rivalry,
 - iv. Identified issues from Chanakya Neeti
 - v. Ethics in scriptures such as Kabir ke Dohe etc.
 - vi. Lessons on ethics from religious scriptures
 - vii. Issued based on Happenings reported in Daily news

L) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Case Method, Group Discussion, seminar, Role Play, Live Demonstrations in Classrooms, Lab, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

M) List of Major Laboratory Equipment, Tools and Software: (Not Applicable)

N) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Professional Ethics and Human Values	D. R. Kiran	McGraw-Hill Education Pvt. Ltd. 2007 ISBN: 9780070633872
2.	A Textbook On Professional Ethics And Human Values	Dr. R S Naagarazan	New Age International (P) Ltd., Publishers, 2017 ISBN: 9789386173768
3.	Ethics, Integrity and Aptitude – Hindi (Paperback) (एथिक्स, सत्त्यनिष्ठा एवं अभिवृत्ति)	P.D Sharma	Rawat Publications, 2019 ISBN: 978-8131609941
4	Chanakya - Niti (Sutra Sahit) (Hindi)	Chanakya	Maple Press. 2014 ISBN 978-9350335529

(b) Online Educational Resources:

- 1. Free Ethics & Compliance Toolkit Ethics and Compliance Initiative (https://www.ethics.org/resources/free-toolkit
- 2. Free & open source tools for ethics practitioners (https://www.cityethics.org/harvard-lab)
- Microsoft Word KPTI XII Indian Ethics 03-05-13 (https://cbseacademic.nic.in/web_material/doc/ktpi/30_KPTI%20XII%20-%20Indian%20Ethics_old.pdfcbseacademic.nic.in)
- Knowledge Traditions & Practices of India (cbseacademic.nic.in) (ps://cbseacademic.nic.in/web_material/Circulars/2012/68_KTPI/Module_5.pdf)
- (c) Others: -

A)	Course Code	: 2400408(T2400408)
B)	Course Title	: Employability Skills Development (Common for all Programmes)
C)	Pre- requisite Course(s)	:
D)	Rationale	:

Education may only be enough to qualify for a job, but employability skills are the major criteria to be considered for a job role. Employability skills are building blocks of any career and they equip one to carry out roles in the company to the best of their ability. Employers usually check these employability skills before hiring. These sets of job-readiness skills are behaviors that are necessary for every job and are essential attitudes that enable students to grow in their careers. Employers value employability skills because they regard these as indications of how their employees will get along with other team members and customers, and how efficiently they will be able to handle the job performance and career success. Employers like to hire a technical expert who also displays well-rounded employability skills.

SBTE, Bihar

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Build resume and showcase portfolio for placement activity.
- **CO-2** Face interviews and participate effectively in Group Discussions.
- **CO-3** Apply engineering tools in work situations and societal processes.

Course		Programme Specific Outcomes* (PSOs)							
Course Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	-	-	3	-	-	2		
CO-2	3	-	-	-	2	2	3		
CO-3	3	-	-	3	3	2	2		

F) Suggested Course Articulation Matrix (CAM):

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

6000000 6000000			Scheme of Study (Hours/Week)							
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)			
		L	Т							
2400408 Employability Skills Development		01	-	-	-	01	01			

Legend:

- CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)
- LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

- SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.
- C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)
- **Note:** TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Α	ssessment S	cheme (Mar	·ks)		
		Theory Ass (TA		-	Work & earning		essment A)	
				Asses	sment VA)			(A+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2400408	Employability Skills	25						25
2400408	Skills Development	25						

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)
 PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)
 TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars,

micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400408

Ma	ijor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1b. TSO 1c. TSO 1d. TSO 1e. TSO 1f.	Perform SWOT analysis and reflect. Develop skills in carrier planning & goal setting Build a Resume using Internet formats. Develop and Design portfolios. Maintain good grooming attire. Introduce oneself to others. Develop a personal website.	 Unit-1.0 Goal Setting 1.1 Career planning, SWOT 1.2 Resume using Internet formats. 1.3 Showcase portfolios. 1.4 Personal grooming. 1.5 Self-Introduction. 1.6 Website Development. 	CO1
TSO 2b. TSO 2c. TSO 2d. TSO 2e.	Face interviews and E- Interviews confidently Participate in group discussions. Use Social media for personal enrichment &Netiquette Manage self for higher growth. Use body language for effective communication Manage Emotions for personal growth	 Unit-2.0 Capacity Development 2.1 Interview Skills 2.2 Group Discussion – Do's & don'ts, leadership, Teamwork, how to interrupt, synthesis, and analysis of topics. 2.3 Social Media for Personal Enrichment 2.4 Body language 2.5 Self-Management. 2.6 Emotional Intelligence 	CO2
TSO 3d	Develop & Maintain Social Contacts. Engage in Social Service projects. Collaborate for mutual advantage. Apply QC-Tools in work situations. Practice Lean Manufacturing Techniques for Production and Operations	Unit-3.0 Utilizing Potential3.1Social Networking3.2Social Engagements, Volunteering3.3Collaboration& Team-work.3.4QC-Tools – Check sheets, Fishbone Diagram, Histogram, Pareto chart, Control-chart, Scatter Diagram, Stratification,3.5Lean Manufacturing, Kanban, Kaizen, Five S, Poka-yoke, Quality Circle	CO3

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: - (Not Applicable)

L) Suggested Term Work and Self Learning: Some sample suggested assignments, micro project and other

activities are mentioned here for reference.

a. Assignments:

- 1 Build a resume for Placement Activity.
- 2 Prepare letters for job applications.

- b. Micro Projects:
 - 1. Prepare collage for personal grooming.
 - 2. Develop a showcase portfolio.
 - 3. Prepare a collage of different gestures and postures of Body Language.
 - 4. Apply Five-S in a work situation.
 - 5. Arrange Mock Interviews, appear, and video record. Reflect on your performance.
 - 6. Organize Group discussions on current topics and video record. Reflect on your performance

c. Other Activities:

- 1. Seminar Topics:
 - Emotional Intelligence.
 - 21st Century Skills.
 - Multitasking
- 2. Visits: Visit nearby Job Fairs, Career Guidance Fairs, etc.
- 3. Self-Learning Topics:
 - Use of social media.
 - Self-introduction.
 - Self-grooming.
 - QC Tools.
 - Lean Manufacturing,
 - Emotional Intelligence.
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix									
	Theory Assessment (TA)**		Term Wo	ork Assessn	nent (TWA)	Lab Assessment (LA) [#]				
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term V	Term Work & Self Learning Assessment			End Laboratory Assessment			
	Class/Mid		Assignments	0		(PLA)	(ELA)			
	Sem Test			Projects	Activities*					
CO-1	30%	-	-	-	-	-	-			
CO-2	40%	-	-	-	-	-	-			
CO-3	30%	-	-	-	-	-	-			
Total	25	-	-	-	-	-	-			
Marks				-						

Legend:

- *: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.
- **: Mentioned under point- (N)
- #: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: (Not Applicable)

O) Suggested Assessment Table for Laboratory (Practical): (Not Applicable)

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

S. No.	Name of Equipment, Tools	Broad
	and Software	Specifications
1.	Group Discussion Tables and chairs	Round Table with seating arrangement for 15 person
2	Mock Interviews infrastructure	2 parallel mock interview set up with recording facility.
3.	Ear phones	Compatible with mobile phones
4	Headphones	Compatible with laptop/desk top
5	Blue tooth	Compatible with mobile phones.
7.	CC TV Camera	Compatible to record presentations and addresses.
8.	Podium	For presentations on stage.
9.	Public address system	For public meetings.
10.	Full Glass Mirrors	For monitoring Body Language

Q) List of Major Laboratory Equipment, Tools and Software:

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Employability Skills Skills for Employability	Dr. M. Sen Gupta	Innovation Publication Pvt Ltd, 2020 ISBN: 978-81-933819-1-5
2.	Employability Skills	Dr. Nishith Rajaram Dubey, Anupam Singh	Indra Publishing House, 2023 ISBN - 978-93-93577-68-9
3.	Organizational Behavior	A. K. Chitale, Rajendra Prasad Mohanty and Dr Nishith Dubey	PHI Learning Pvt Ltd ISBN 978-81-203-4696-3
4.	Managerial Skills	Dr Nishith Dubey & Prof Gitanjali Shrivastava	Shiva Prakashan, Indore, India,2010, ISBN 81-7677-100-7,
5.	Body Language	Allan Pease	Pease International PTY. Ltd Australia

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
6.	Production and Operations Management Goods & Services approach	Dr S.V Deshmukh, Dr A. K. Chitale and Dr Nishith Dubey	Archers & Elevators publishing house, Bangalore, ISBN 9789386501197
7.	Emotional Intelligence	Daniel Goleman	Word Press.Com, 9789382563792
8.	How to win friends and influence people	Dale Carnegie	Srishti Publishers & Distributors, Delhi, India

(b) Online Educational Resources:

- 2. CAREER DEVELOPMENT GUIDE https://www.engineersaustralia.org.au/sites/default/files/content-files/2016-12/career_development_guide_may_2014.pdf
- 3. Tips for successful career planning tips://www.aryacollege.in/tips-for-successful-career-planning-in-2021/
- 4. Career Planning Complete Guidehttps://www.mygreatlearning.com/blog/what-is-career-planning/
- 5. Build Resume: https://www.themuse.com/advice/how-to-make-a-resume-examples
- 6. Build Resume https://resumegenius.com/blog/resume-help/how-to-write-a-resume
- 7. Body Language: https://ubiquity.acm.org/article.cfm?id=3447263
- 8. Group Discussions: https://brightspeaking.com/en/how-to-effectively-participate-in-a-group-discussion/
- 9.Carrier planning & goal setting: https://www.hays.com.au/career-advice/career-development/settingcareer-goals
- 10. Carrier planning & goal setting: https://www.thebalancemoney.com/step-by-step-guide-to-settingcareer-goals-2059883
- 11. Collaboration & teamwork: https://www.indeed.com/career-advice/career-development/teamworkand-collaboration
- 12. Interview skills: https://www.youtube.com/watch?v=IKCTS9dY4h4
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.
 - (c) Others: -

 ⁴⁻Year Plan For Career Success: https://eng.umd.edu/sites/clark.umd.edu/files/4%20Year%20Plan%20For%20Career%20Success_Cate gorized_1.pdf